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ABSTRACT
We propose RABIEF, a novel and fully automatic approach to fix C
integer errors based on range analysis. RABIEF is inspired by the
following insights: (1) fixes for various integer errors have typical
patterns including sanitization, explicit cast and declared type al-
teration; (2) range analysis provides sound basis for error detection
and guides fix generation. We implemented RABIEF into a tool
ARGYI. Its effectiveness and efficiency have been substantiated by
the facts that: (1) ARGYI succeeds in fixing 93.9% of 5414 inte-
ger bugs from Juliet test suite, scaling to 600 KLOC within 5500
seconds; (2) ARGYI is confirmed to correctly fix 20 errors from 4
real-world programs within only 240 seconds.

CCS Concepts
•Software and its engineering→ Automated static analysis;
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1. PROBLEM AND MOTIVATION
Integer errors in C include overflow, sign misinterpretation, lossy

truncation and other undefined behaviors such as divided-by-zero.
They can lead to serious system crash (e.g. the failure of Ari-
ane 5 [19]), or become an important source of vulnerabilities [1].
Integer use in C is quite error-prone, as C integers actually have
semantics of fixed-size bit-vectors and implicit conversion is al-
lowed. Therefore, addressing integer errors is an important and
long-standing problem. Existing automated program repair tech-
niques either require external specifications for practical effective-
ness [18, 8, 11], or aggressively transform bugs into program crash [4,
20]. To overcome these limitations, we propose RABIEF, a novel
approach to fix integer errors based on range analysis. The essential
ideas behind RABIEF are: (1) many integer bugs can be prevented
by improving precision instead of aggressive sanitization ; (2) ex-
isting fixes have typical patterns; (3) the criterion for integer errors
are general and they can be captured by range analysis [7].

We found that fixes for most real-world integer errors can be
summarized as three typical patterns, presented in Figure 1. Saniti-

Table 1: Three fixing patterns.
 Before Fixing After Fixing 

SA 

long size; 
void *mem; 
mem = malloc(size); 

long size; 
void *mem; 
if(size < 0 || size > SIZE_MAX) 
  abort(); 
mem = malloc((size_t)size); 

TC 
int a = -1; 
unsigned b = 0; 
if(a > b) 
  error(); 

int a = -1; 
unsigned b = 0; 
if((int)a > (int)b) 
  error(); 

TA 
int a = rand(0, INT_MAX); 
int b = rand(0, 10); 
a = a + b; 

long a = rand(0, INT_MAX); 
int b = rand(0, 10); 
a = a + b; 

zation (SA) checks whether an expression have safe value for cer-
tain critical operation. Explicit type cast (TC) enforces the type of
certain expression to prevent underlying implicit conversion. De-
clared type alteration (TA) changes the type of variable to its under-
lying type which is different from the declared one.

The condition of safe integer use is general. In most cases, de-
veloper’s expectation of integer semantics can be summarized as
the following assumptions:

A1 Semantics of a bit manipulation and reaching definitions of
its operands are expected as over bit-vector.

A2 Semantics of an integer used in arithmetic or relational oper-
ation is expected as over Z;

Thus, an integer error is supposed to occur when one of the as-
sumptions is violated by mixing different semantics in integer use.
It is noteworthy that although these assumptions are not absolute,
they are sufficient for most of integer bugs in practice.

2. BACKGROUND AND RELATED WORK
Tools for automated generic bug fixing based on generate-and-

validate [18, 17, 16, 12, 8, 9] or program synthesis [11, 10] can
cover integer errors. However, they face several difficulties: (1)
the effectiveness heavily relies on specifications which are often
insufficient or incomplete; (2) generated patches rarely ensure cor-
rectness [13]. Moreover, even the state-of-the-art approach [9] gen-
erally requires hours of searching for a practical fix.

There are some other approaches specific to integer errors. Z.
Coker et al. apply code transformations [3] based on several design
decisions, however overflows are transformed into unrecoverable
exceptions by using safe integer library. Dynamic approaches [4,
5, 14, 20] essentially sanitize critical integer operations, but they
would miss bugs on non-critical sites leading to the erroneous run-
time behavior.

3. APPROACH AND UNIQUENESS
The workflow of RABIEF is illustrated in Figure 1. At first,

range analysis is performed on preprocessed source code to collect
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Figure 1: Overview of RABIEF approach.

range information, then we generate (1) MaxSMT [6] constraints of
underlying types for variables, and (2) fixes of TC and SA. Fixes
of TA are generated by solving the type constraints. Finally, fixes
are applied to the original source.
Static analysis. Mainly three analyses are employed. Range anal-
ysis infers and propagates ranges of expressions. Pointer analysis
captures pointer-to and alias relation. Taint analysis [15] tracks val-
ues involved in bit manipulation. This analysis is used to preserve
intentional wraparound with respect to A1. To improve precision,
we do not propagate value which prohibits the continued execution.
For example, when a ∈ [2, 5] and b ∈ [−2, 2], the range of a/b is
inferred as [−5, 5] while the divided-by-zero case is discarded.
Constraint generation. Constraints are logical formulae specify-
ing underlying types for variables. They are built with the following
two basic predicates:
• cover(t1, t2): Rt2 ⊆ Rt1 (Rt denotes the range of t);
• equiv(t1, t2): t1 and t2 are equivalent types.

Given a statement s and range state R that maps expression e to
range I ⊆ Z, its MaxSMT constraint C is determined by rules
shown in Table 2. Constraint for external declaration is hard indi-
cating that its type should not be altered. Other constraints are soft
and assigned with a weight value (such as α and β), indicating the
penalty of violation. A MaxSMT solver can give a solution mini-
mizing total penalty. In particular, a zero-penalty solution assigns
variables with types fully compatible with correctness assumptions
on integer behavior. Practically, we have β > α since type alter-
ation has higher priority than minimizing modification on code.

Table 2: Constraint generation rules.
Stmt. s Constraint C
extern T x equiv(tx, T)
T x α : equiv(tx, T) ∧ β : cover(tx, T)
x = e β : cover(tx, t

′), whereR(e) = I , t′ ≺ I†

† t′ ≺ I denotes t′ minimally covers I , i.e. no t′′ 6= t′ exists
such that Rt′ ⊇ I , Rt′′ ⊇ I and cover(t′, t′′).

Fix generation. Formally, we use FSA(e) to denote SA on expres-
sion e, FTA(v, t) to denote TA on variable v to type t and FTC(e, t)
to denote TC on e to t. FSA(e) is generated when e is on critical
site where type alteration is not permitted, such as function param-
eter and return statement. We have FTA(v, t) if v is assigned with
t in MaxSMT solution. Finally, for binary expression e1 ./ e2,
FTC(e1, t) and FTC(e2, t) is generated when there exists t such that
Rt ≺ (R(e1) ∪R(e2) ∪R(e1 ./ e2)).
Fix merging. Multiple fixes can be assigned to one syntactic ele-
ment. Let C be the function that merges multiple fixes into one. We
have C(FTC(e, t1), . . . , FTC(e, tn)) = FTC(e, t) if t exists such
that t ≺ Rt1 ∪ · · · ∪Rtn , otherwise t is the type in t1, . . . , tn with
the widest range. Also, C(FTC(e, t), FSA(e)) = FSA(FTC(e, t)).
Other combinations are impossible. For example, there could not
be multiple FTA(v, t) since t is determined by MaxSMT solution.

The novelty of RABIEF is summarized as follows. First, RABIEF
is fully automatic without relying on additional specifications or ex-
isting correct patches. Second, RABIEF can generate fixes which

keep as much acceptability of continued execution as possible. Third,
RABIEF is fully static and applicable for code segments.

4. RESULT AND CONTRIBUTION
We implemented RABIEF into an tool ARGYI, which is evalu-

ated on NIST’s Juliet test suite (a collection of test bench programs
in C/C++ developed for assessing the capability of program anal-
ysis tools) and 4 real-world open-source projects for effectiveness
and efficiency. Weights α and β are set to 1 and 80 respectively,
which is an optimal setting according to pilot experiments.

Table 3: Result on Juliet test suite.
CWE #File KLOC 

BAD (Time: s) GOOD 
#Fixed TFIX TRUN_ORIG TRUN_FIXED #Corrupt 

190 1938 230.060 1817 1876 1.30 1.22 0 
191 1178 141.385 971 1112 0.65 0.65 0 
194 760 79.768 760 956 CRASH 1.02 0 
195 760 78.400 760 830 CRASH 0.55 0 
196 18 1.547 18 17 0.03 0.03 0 
197 570 49.245 570 525 0.41 0.27 0 
680 190 19.600 190 179 CRASH 0.26 0 
Σ 5414 600.005 5086 5495 N/A 4.00 0 

From Juliet test suite, we choose programs from 7 CWE cate-
gories involving integer error. CWE 190, 191 and 680 are overflow
errors. CWE 194-197 are related to unexpected conversions. Each
test program contains a bad function (containing exactly one de-
fect) and at least one good function.

Table 3 shows the experimental results. ARGYI succeeds in fix-
ing 5086/5414=93.9% bugs in 5495 seconds. False negatives are
caused by limited precision of native C integers for overflow is-
sues of 64-bit integers. By profiling the running of ARGYI, we
found that the main bottleneck on efficiency is static analysis phase,
which occupies 96.8% of total time. Column 6-7 show that applied
fixes bring negligible overhead. Moreover, the results show that
none of good functions are corrupted. This substantiates the ro-
bustness of RABIEF for flawless code.

Table 4: Result on real-world projects.
Program Version #BugFixed TFIX Time: s  

PostgreSQL 9.0.15 4 24.249 
GIMP 2.6.7 11 204.341 
gzip 1.3.9 1 2.124 

FFmpeg 2.0.1 3 9.334 

ARGYI is also evaluated on 4 open-source projects based on re-
cent reported defects in CVE database. We directly apply ARGYI
to the function with target defect and check if new program does
not crash or return unexpected result with certain test case. The ex-
perimental results are shown in Table 4. ARGYI is confirmed to fix
totally 20 bugs in 240 seconds. In particular, the fixed expression in
gzip contains multiple integer errors mixed together. We also have
two important observations: (1) MaxSMT solving becomes expen-
sive when the code contains many intricate numerical operations,
which is the case for several bugs in GIMP; (2) A large portion
of real-world integer errors involve using overflown value in buffer
manipulation (e.g. IO2BO bugs [2]).

Our contributions are highlighted as follows. (1) We propose a
novel and automatic approach RABIEF, which generates fixes of
three typical patterns by leveraging range analysis. (2) We imple-
mented RABIEF into a tool ARGYI and evaluate it with Juliet test
suite and several real-world projects. ARGYI correctly fixes most
of integer errors efficiently while does not corrupt any flawless pro-
grams. The effectiveness and efficiency of RABIEF are of practical
benefits.
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