
RABIEF: Range Analysis Based Integer Error Fixing

Xi Cheng
School of Software, Tsinghua University

Beijing, China
chengxi13@mails.tsinghua.edu.cn

ABSTRACT
We propose RABIEF, a novel and fully automatic approach to fix C
integer errors based on range analysis. RABIEF is inspired by the
following insights: (1) fixes for various integer errors have typical
patterns including sanitization, explicit cast and declared type al-
teration; (2) range analysis provides sound basis for error detection
and guides fix generation. We implemented RABIEF into a tool
ARGYI. Its effectiveness and efficiency have been substantiated by
the facts that: (1) ARGYI succeeds in fixing 93.9% of 5414 inte-
ger bugs from Juliet test suite, scaling to 600 KLOC within 5500
seconds; (2) ARGYI is confirmed to correctly fix 20 errors from 4
real-world programs within only 240 seconds.

CCS Concepts
•Software and its engineering→ Automated static analysis;

Keywords
integer error, range analysis, fixing pattern

1. PROBLEM AND MOTIVATION
Integer errors in C include overflow, sign misinterpretation, lossy

truncation and other undefined behaviors such as divided-by-zero.
They can lead to serious system crash (e.g. the failure of Ari-
ane 5 [19]), or become an important source of vulnerabilities [1].
Integer use in C is quite error-prone, as C integers actually have
semantics of fixed-size bit-vectors and implicit conversion is al-
lowed. Therefore, addressing integer errors is an important and
long-standing problem. Existing automated program repair tech-
niques either require external specifications for practical effective-
ness [18, 8, 11], or aggressively transform bugs into program crash [4,
20]. To overcome these limitations, we propose RABIEF, a novel
approach to fix integer errors based on range analysis. The essential
ideas behind RABIEF are: (1) many integer bugs can be prevented
by improving precision instead of aggressive sanitization ; (2) ex-
isting fixes have typical patterns; (3) the criterion for integer errors
are general and they can be captured by range analysis [7].

We found that fixes for most real-world integer errors can be
summarized as three typical patterns, presented in Figure 1. Saniti-

Table 1: Three fixing patterns.
 Before Fixing After Fixing 

SA 

long size; 
void *mem; 
mem = malloc(size); 

long size; 
void *mem; 
if(size < 0 || size > SIZE_MAX) 
  abort(); 
mem = malloc((size_t)size); 

TC 
int a = -1; 
unsigned b = 0; 
if(a > b) 
  error(); 

int a = -1; 
unsigned b = 0; 
if((int)a > (int)b) 
  error(); 

TA 
int a = rand(0, INT_MAX); 
int b = rand(0, 10); 
a = a + b; 

long a = rand(0, INT_MAX); 
int b = rand(0, 10); 
a = a + b; 

zation (SA) checks whether an expression have safe value for cer-
tain critical operation. Explicit type cast (TC) enforces the type of
certain expression to prevent underlying implicit conversion. De-
clared type alteration (TA) changes the type of variable to its under-
lying type which is different from the declared one.

The condition of safe integer use is general. In most cases, de-
veloper’s expectation of integer semantics can be summarized as
the following assumptions:

A1 Semantics of a bit manipulation and reaching definitions of
its operands are expected as over bit-vector.

A2 Semantics of an integer used in arithmetic or relational oper-
ation is expected as over Z;

Thus, an integer error is supposed to occur when one of the as-
sumptions is violated by mixing different semantics in integer use.
It is noteworthy that although these assumptions are not absolute,
they are sufficient for most of integer bugs in practice.

2. BACKGROUND AND RELATED WORK
Tools for automated generic bug fixing based on generate-and-

validate [18, 17, 16, 12, 8, 9] or program synthesis [11, 10] can
cover integer errors. However, they face several difficulties: (1)
the effectiveness heavily relies on specifications which are often
insufficient or incomplete; (2) generated patches rarely ensure cor-
rectness [13]. Moreover, even the state-of-the-art approach [9] gen-
erally requires hours of searching for a practical fix.

There are some other approaches specific to integer errors. Z.
Coker et al. apply code transformations [3] based on several design
decisions, however overflows are transformed into unrecoverable
exceptions by using safe integer library. Dynamic approaches [4,
5, 14, 20] essentially sanitize critical integer operations, but they
would miss bugs on non-critical sites leading to the erroneous run-
time behavior.

3. APPROACH AND UNIQUENESS
The workflow of RABIEF is illustrated in Figure 1. At first,

range analysis is performed on preprocessed source code to collect

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

FSE’16, November 13–18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...$15.00
http://dx.doi.org/10.1145/2950290.2983961

1094



 

range analyzer 

range

pointertaint

1.static
analysis 

2.constraint
generation  constraints 

TAs 

MaxSMT 
solving 

TCs 

SAs 

3.fix 
generation  fixed 

code 

fix 
application 

CIL source 

4.fix 
merging 

Figure 1: Overview of RABIEF approach.

range information, then we generate (1) MaxSMT [6] constraints of
underlying types for variables, and (2) fixes of TC and SA. Fixes
of TA are generated by solving the type constraints. Finally, fixes
are applied to the original source.
Static analysis. Mainly three analyses are employed. Range anal-
ysis infers and propagates ranges of expressions. Pointer analysis
captures pointer-to and alias relation. Taint analysis [15] tracks val-
ues involved in bit manipulation. This analysis is used to preserve
intentional wraparound with respect to A1. To improve precision,
we do not propagate value which prohibits the continued execution.
For example, when a ∈ [2, 5] and b ∈ [−2, 2], the range of a/b is
inferred as [−5, 5] while the divided-by-zero case is discarded.
Constraint generation. Constraints are logical formulae specify-
ing underlying types for variables. They are built with the following
two basic predicates:
• cover(t1, t2): Rt2 ⊆ Rt1 (Rt denotes the range of t);
• equiv(t1, t2): t1 and t2 are equivalent types.

Given a statement s and range state R that maps expression e to
range I ⊆ Z, its MaxSMT constraint C is determined by rules
shown in Table 2. Constraint for external declaration is hard indi-
cating that its type should not be altered. Other constraints are soft
and assigned with a weight value (such as α and β), indicating the
penalty of violation. A MaxSMT solver can give a solution mini-
mizing total penalty. In particular, a zero-penalty solution assigns
variables with types fully compatible with correctness assumptions
on integer behavior. Practically, we have β > α since type alter-
ation has higher priority than minimizing modification on code.

Table 2: Constraint generation rules.
Stmt. s Constraint C
extern T x equiv(tx, T)
T x α : equiv(tx, T) ∧ β : cover(tx, T)
x = e β : cover(tx, t

′), whereR(e) = I , t′ ≺ I†

† t′ ≺ I denotes t′ minimally covers I , i.e. no t′′ 6= t′ exists
such that Rt′ ⊇ I , Rt′′ ⊇ I and cover(t′, t′′).

Fix generation. Formally, we use FSA(e) to denote SA on expres-
sion e, FTA(v, t) to denote TA on variable v to type t and FTC(e, t)
to denote TC on e to t. FSA(e) is generated when e is on critical
site where type alteration is not permitted, such as function param-
eter and return statement. We have FTA(v, t) if v is assigned with
t in MaxSMT solution. Finally, for binary expression e1 ./ e2,
FTC(e1, t) and FTC(e2, t) is generated when there exists t such that
Rt ≺ (R(e1) ∪R(e2) ∪R(e1 ./ e2)).
Fix merging. Multiple fixes can be assigned to one syntactic ele-
ment. Let C be the function that merges multiple fixes into one. We
have C(FTC(e, t1), . . . , FTC(e, tn)) = FTC(e, t) if t exists such
that t ≺ Rt1 ∪ · · · ∪Rtn , otherwise t is the type in t1, . . . , tn with
the widest range. Also, C(FTC(e, t), FSA(e)) = FSA(FTC(e, t)).
Other combinations are impossible. For example, there could not
be multiple FTA(v, t) since t is determined by MaxSMT solution.

The novelty of RABIEF is summarized as follows. First, RABIEF
is fully automatic without relying on additional specifications or ex-
isting correct patches. Second, RABIEF can generate fixes which

keep as much acceptability of continued execution as possible. Third,
RABIEF is fully static and applicable for code segments.

4. RESULT AND CONTRIBUTION
We implemented RABIEF into an tool ARGYI, which is evalu-

ated on NIST’s Juliet test suite (a collection of test bench programs
in C/C++ developed for assessing the capability of program anal-
ysis tools) and 4 real-world open-source projects for effectiveness
and efficiency. Weights α and β are set to 1 and 80 respectively,
which is an optimal setting according to pilot experiments.

Table 3: Result on Juliet test suite.
CWE #File KLOC 

BAD (Time: s) GOOD 
#Fixed TFIX TRUN_ORIG TRUN_FIXED #Corrupt 

190 1938 230.060 1817 1876 1.30 1.22 0 
191 1178 141.385 971 1112 0.65 0.65 0 
194 760 79.768 760 956 CRASH 1.02 0 
195 760 78.400 760 830 CRASH 0.55 0 
196 18 1.547 18 17 0.03 0.03 0 
197 570 49.245 570 525 0.41 0.27 0 
680 190 19.600 190 179 CRASH 0.26 0 
Σ 5414 600.005 5086 5495 N/A 4.00 0 

From Juliet test suite, we choose programs from 7 CWE cate-
gories involving integer error. CWE 190, 191 and 680 are overflow
errors. CWE 194-197 are related to unexpected conversions. Each
test program contains a bad function (containing exactly one de-
fect) and at least one good function.

Table 3 shows the experimental results. ARGYI succeeds in fix-
ing 5086/5414=93.9% bugs in 5495 seconds. False negatives are
caused by limited precision of native C integers for overflow is-
sues of 64-bit integers. By profiling the running of ARGYI, we
found that the main bottleneck on efficiency is static analysis phase,
which occupies 96.8% of total time. Column 6-7 show that applied
fixes bring negligible overhead. Moreover, the results show that
none of good functions are corrupted. This substantiates the ro-
bustness of RABIEF for flawless code.

Table 4: Result on real-world projects.
Program Version #BugFixed TFIX Time: s  

PostgreSQL 9.0.15 4 24.249 
GIMP 2.6.7 11 204.341 
gzip 1.3.9 1 2.124 

FFmpeg 2.0.1 3 9.334 

ARGYI is also evaluated on 4 open-source projects based on re-
cent reported defects in CVE database. We directly apply ARGYI
to the function with target defect and check if new program does
not crash or return unexpected result with certain test case. The ex-
perimental results are shown in Table 4. ARGYI is confirmed to fix
totally 20 bugs in 240 seconds. In particular, the fixed expression in
gzip contains multiple integer errors mixed together. We also have
two important observations: (1) MaxSMT solving becomes expen-
sive when the code contains many intricate numerical operations,
which is the case for several bugs in GIMP; (2) A large portion
of real-world integer errors involve using overflown value in buffer
manipulation (e.g. IO2BO bugs [2]).

Our contributions are highlighted as follows. (1) We propose a
novel and automatic approach RABIEF, which generates fixes of
three typical patterns by leveraging range analysis. (2) We imple-
mented RABIEF into a tool ARGYI and evaluate it with Juliet test
suite and several real-world projects. ARGYI correctly fixes most
of integer errors efficiently while does not corrupt any flawless pro-
grams. The effectiveness and efficiency of RABIEF are of practical
benefits.

1095



5. REFERENCES
[1] CVE-2001-0144. http://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2001-0144.
[2] CWE-680: Integer Overflow to Buffer Overflow.

https://cwe.mitre.org/data/definitions/680.html.
[3] Z. Coker and M. Hafiz. Program transformations to fix C

integers. In 35th International Conference on Software
Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013, pages 792–801, 2013.

[4] R. B. Dannenberg, W. Dormann, D. Keaton, R. C. Seacord,
D. Svoboda, A. Volkovitsky, T. Wilson, and T. Plum. As-if
infinitely ranged integer model. In IEEE 21st International
Symposium on Software Reliability Engineering, ISSRE
2010, San Jose, CA, USA, 1-4 November 2010, pages
91–100, 2010.

[5] W. Dietz, P. Li, J. Regehr, and V. S. Adve. Understanding
integer overflow in C/C++. ACM Trans. Softw. Eng.
Methodol., 25(1):2, 2015.

[6] Z. Fu and S. Malik. On solving the partial MAX-SAT
problem. In Theory and Applications of Satisfiability Testing
- SAT 2006, 9th International Conference, Seattle, WA, USA,
August 12-15, 2006, Proceedings, pages 252–265, 2006.

[7] W. H. Harrison. Compiler analysis of the value ranges for
variables. IEEE Trans. Software Eng., 3(3):243–250, 1977.

[8] F. Long and M. Rinard. Staged program repair with
condition synthesis. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4,
2015, pages 166–178, 2015.

[9] F. Long and M. Rinard. Automatic patch generation by
learning correct code. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, pages 298–312, 2016.

[10] S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix: Looking
for simple program repairs. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence,
Italy, May 16-24, 2015, Volume 1, pages 448–458, 2015.

[11] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra.
Semfix: program repair via semantic analysis. In 35th
International Conference on Software Engineering, ICSE
’13, San Francisco, CA, USA, May 18-26, 2013, pages
772–781, 2013.

[12] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of

random search on automated program repair. In 36th
International Conference on Software Engineering, ICSE
’14, Hyderabad, India - May 31 - June 07, 2014, pages
254–265, 2014.

[13] Z. Qi, F. Long, S. Achour, and M. C. Rinard. An analysis of
patch plausibility and correctness for generate-and-validate
patch generation systems. In Proceedings of the 2015
International Symposium on Software Testing and Analysis,
ISSTA 2015, Baltimore, MD, USA, July 12-17, 2015, pages
24–36, 2015.

[14] R. E. Rodrigues, V. H. S. Campos, and F. M. Q. Pereira. A
fast and low-overhead technique to secure programs against
integer overflows. In Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and
Optimization, CGO 2013, Shenzhen, China, February 23-27,
2013, pages 33:1–33:11, 2013.

[15] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In
31st IEEE Symposium on Security and Privacy, S&P 2010,
16-19 May 2010, Berleley/Oakland, California, USA, pages
317–331, 2010.

[16] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard.
Automatic error elimination by horizontal code transfer
across multiple applications. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, Portland, OR, USA, June 15-17, 2015,
pages 43–54, 2015.

[17] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program
equivalence for adaptive program repair: Models and first
results. In 2013 28th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2013, Silicon Valley,
CA, USA, November 11-15, 2013, pages 356–366, 2013.

[18] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic programming.
In 31st International Conference on Software Engineering,
ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Proceedings, pages 364–374, 2009.

[19] Wikipedia. Ariane 5 Flight 501.
https://en.wikipedia.org/wiki/Ariane_5_Flight_501.
Accessed: 2016-06-25.

[20] C. Zhang, W. Zou, T. Wang, Y. Chen, and T. Wei. Using type
analysis in compiler to mitigate
integer-overflow-to-buffer-overflow threat. Journal of
Computer Security, 19(6):1083–1107, 2011.

1096


