
Automatic Fix for C Integer Errors by Precision Improvement

Xi Cheng1,2,3, Min Zhou1,2,3, Xiaoyu Song4, Ming Gu1,2,3, Jiaguang Sun1,2,3

1Key Laboratory for Information System Security, MoE, China
2Tsinghua National Laboratory for Information Science and Technology (TNList), China

3School of Software, Tsinghua University, China
4Electrical and Computer Engineering, Portland State University, USA

chengxi13@mails.tsinghua.edu.cn, {mzhou,guming,sunjg}@tsinghua.edu.cn, song@ece.pdx.edu

Abstract—Integer errors in C program may lead to serious
failures and vulnerabilities. They are harbored in a wide range
of programs including mature software such as Linux kernel.
Code reviewing is laborious and cannot guarantee reliable
fixes for errors. Addressing potential errors in the development
phase is error-prone even for experts and essentially hinders de-
veloping efficiency. In this paper we propose a novel approach
to automate fix for C integer errors. Our approach directly
replaces original C integers with dynamic-precision integers to
fix potential errors without detecting them in advance. Many
errors can be fixed by precision improvement without changing
the design of application. We implement a tool CIntFix to
automatically fix C integer errors. CIntFix succeeds in fixing
all 5414 programs in NIST’s Juliet test suite from 7 weakness
categories. Meanwhile, on Juliet test suite and SPEC CINT2000
benchmarks, CIntFix processes C source code at the rate of
0.157s/KLOC and the fixed programs have 18.0% slowdown
on average. The results show that CIntFix is capable to fix
integer errors in real-world C programs.

Keywords-integer error, tolerability, code transformation

I. INTRODUCTION

Integer errors in C program include overflow, underflow,
sign misinterpretation and lossy truncation. These errors
originate from bounded representation in memory, where an
integer is stored with a fixed number of bits (bit-vector).
C integer errors can lead to serious software failures. The
failure of the Ariane 5 launcher in 1996 [1] was caused
by a lossy truncation from 64-bit floating point to 16-
bit signed integer. A potential problem of unexpected total
power loss in Boeing 787 Dreamliners [2] reported in 2015
was caused by an overflow error of a 32-bit signed integer.
Moreover, C integer errors can also become a source of
serious vulnerabilities. For example, if an overflow occurs
in calculation of determining how much memory to allocate,
the program can possibly access more memory than expected
which results in buffer overflow. Such errors can be found
in many widely-used software such as Firefox [3] and
Flash [4], and they allow attackers to obtain critical infor-
mation, escalate privilege and execute arbitrary malicious
codes. Integer overflow error is one of the main threats
to security of software applications. According to a CVE
report in 2007 [5], integer overflow error is the second
most common vulnerability in the advisories for OS vendor.
MITRE also places integer overflow in the “Top 25 Most
Dangerous Software Errors" in 2011 [6].

It is challenging to reliably address integer errors in
C program and the reasons are twofold. First, overflow

void qsort(int arr[], int left, int right)
{
int i = left, j = right;
int pivot = arr[(left + right) / 2];

/* partition and recursion */
}

Listing 1. A simplified implementation of quicksort. (left + right)
overflows when both left and right are assigned with large values.

and inconsistent conversion are insufficient to be witnesses
of integer errors because they are language features. For
example, overflow of unsigned integer is well-defined and
particularly common in device drivers and cryptographic
applications. Second, developers are often aware of possible
errors in program and protect critical sites such as mem-
ory allocations with sanitization. If such protection works,
suspicious integer behaviors are anticipated and should not
be regarded as errors. Furthermore, fixing integer errors
correctly is quite difficult due to complicated semantics
of C integers. A sign misinterpretation error in gzip was
addressed incorrectly for multiple times, and was finally
fixed correctly 17 years after its introduction [7].

Due to its importance, researchers have shown great
concern for addressing C integer errors. Many tools and
techniques are proposed for detection and repair of integer
errors in source code [7]–[10] or binaries [11]–[13]. How-
ever, they have several drawbacks in general. First, most of
them focus on overflow error while sign misinterpretation
and lossy truncation are seldom discussed in detail. Second,
most techniques are limited on detecting and preventing
integer errors while they are unable to guide developers
to revise faulty code correctly. Third, existing dynamic
techniques are too aggressive for tolerable errors. Consider
the code snippet shown in Listing 1. If the array to be sorted
is very long, (left + right) possibly overflows while
the index never exceeds the range of int. This issue can
be addressed by rewriting expression or elevating types of
operands, but unfortunately many approaches would capture
this error and directly halt the program.

In this paper, we propose a novel approach to fix C integer
errors automatically by elevating precision of integer, i.e.
enlarging the range of integer where error may occur. This
approach brings several benefits. First, an integer variable
improves its precision when assigned with the value out
of its range. As a result, this variable can avoid storing an
inconsistent value due to wraparound or implicit conversion.
Second, integer errors are addressed in a lazy manner. All

2016 IEEE 40th Annual Computer Software and Applications Conference

0730-3157/16 $31.00 © 2016 IEEE

DOI 10.1109/COMPSAC.2016.70

2

overflows and problematic conversions are tolerated with
high precision integer operations until we reach a critical
site such as function call and memory operation. Laziness
makes our approach failure-oblivious, i.e. having a reason-
able acceptability of continued execution. Third, potential
errors can be fixed without being detected by employing
sophisticated and expensive analysis in advance.

Our contributions are highlighted as follows.

1) We define the concept of tolerability. The tolerable
error can be fixed by elevating integer precision but
the intolerable ones cannot.

2) We propose a code transformation technique to fix
faulty programs. Built-in integer types are replaced with
multi-precision type where the error is tolerable. For
intolerable errors, sanitization is employed to ensure
that the error does not propagate elsewhere.

3) We implement a prototype tool CIntFix to automate
the above fix technique. Experiment results show that it
can correctly fix all errors in 5414 test programs from 7
categories in Juliet test suite. It takes less than 7 seconds
to process every one thousand lines of code and fixing
induces about 18.0% runtime overhead. The results
indicate that our method is promising for practical use.

The rest of paper is organized as follows. Section II
defines integer error and its tolerability. Section III outlines
code transformation technique. Section IV describes design
of CIntFix and implementation issues. Section V evaluates
CIntFix using standard benchmarks. Section VI surveys
related work. Finally, Section VII summarizes our work.

II. TOLERABILITY OF INTEGER ERRORS

In C language, an integer is represented by a fixed-size
bit-vector. In bit-vector logic, arithmetic semantics depends
on width and encoding while the former refers to the
length of bit-vector and the latter refers to the method of
interpreting a bit-vector as numerical value. For a n-bit bit-
vector x = an−1 . . . a0, binary encoding interprets it as an
unsigned integer 〈x〉U while two’s complement interprets it
as a signed integer 〈x〉S , as follows.

〈x〉U =
n−1∑
i=0

ai · 2i

〈x〉S = −2n−1 · an−1 +
n−2∑
i=0

ai · 2i

Due to the finite encoding of integers, arithmetic over fixed-
size bit-vector is different from that over Z. For example,
∀x, y.(x − y > 0) ⇔ (x > y) does not hold when
x, y are n-bit bit-vectors with signed encoding and one
of the counterexamples is x = 00 . . . 0 and y = 11 . . . 1.
Developers have to deal with complex bit-vector semantics
in every programming, which is quite error-prone.

A. A Kernel Language: IKL

To facilitate our discussion of C, we introduce an im-
perative kernel language IKL. It is an abstraction of C’s
subset (shown in Figure 1). A IKL program is a collection
of functions where the main one initiates the execution. Its

arguments are supplied from input stream and the value re-
turned is appended to the output stream. Functions take any
number of arguments and return a single value. The function
body consists of statements and a return operation. The
output statement writes an 64-bit signed integer to the
output stream. The vari statement declares a 64-bit signed
integer and initialized as 0 while varp statement declares
an empty pointer. Expressions in IKL may have side effects.
The input expression reads a 64-bit signed integer from
input stream. The comparison operation yields 0 for false
and 1 for true. malloc allocates a single heap cell with the
size of 64 bits and returns its pointer. We also model three
kinds of conversions: (1) cast from the signed to unsigned
(s2u) and vice versa (u2s); (2) trunc operation to truncate
an integer by a bit; (3) ext operation to extend an integer by
a bit. IKL is well-typed with the following restrictions: (1)
binary operators are applied to integers only; (2) the value
of a controller expression must be 0 or 1; (3) * operator
only applies to pointers; (4) only functions can be called.

We introduce the concept of program state. Given a
program P , we use X to denote the set of qualified names
of identifiers. A state of P is denoted by a binary tuple
(Δ, σ) where Δ : X → Z maps names to integers and
σ ∈ 2X×X stores point-to relations. Initially, all names in
X are undefined in Δ and σ = ∅. A variable appears in Δ
and σ after it is created and is removed after the program
counter leaves its scope. Program state depicts execution
context determining evaluation result along with side effects
of an expression and execution consequence of a statement.

The operational semantics of IKL is shown in Figure 2. An
expression can be either an integer or a pointer. An integer
expression is evaluated as a numerical value while a pointer
expression is evaluated as a pointer. We explain the rule of
function call here since it is the most complicated one. To
evaluate a function call, we first evaluate its arguments of
which results are passed to corresponding parameters. In the
scope of function x, we use qualified names of parameters in
Δ and σ. By executing function body and evaluating return
expression, we obtain the final evaluation result along with
the modified program state. Notice that we omit the case of
calling a function pointer. In this case, we first look up the
actual function to be called in σ. Figure 2 also lists rules
of all statements. Assignments (including x = e and *x =
e) are discussed by the type of left-hand expression because
they change program state in different manners.

B. Integer Error and its Tolerability
Generally speaking, an integer error occurs when a certain

computation in program produces a result inconsistent with
that under arithmetic over Z.

Definition 1 (Integer error). Given a program P and its state
ε, an integer error occurs in evaluating expression e:

• if e ::= e1♦be2 such that 〈e1, ε〉 → 〈n1, ε
′〉, 〈e2, ε′〉 →

〈n2, ε
′′〉, 〈e, ε〉 → 〈n, ε′′〉 and we have n1�bn2 	= n

where �b ∈ {+,−,×, /,mod, <,≤,=}, ♦b and �b

are corresponding operators;
• if e ::= cast(e1) such that 〈e1, ε〉 → 〈n1, ε

′〉,
〈e, ε〉 → 〈n, ε′〉 and we have n 	= n1 where cast

3

E ::= n | x | E♦bE | (E) | input | &x | malloc | *E | null | E(E,. . . ,E) | u2s(E) | s2u(E) | trunc(E) | ext(E)
S ::= skip; | x = E; | *x = E; | output E; | S S | if(E) {S} else {S} | while(E) {S} | vari x; | varp x;
F ::= x(x, . . . , x) {S return E;}
P ::= F . . . F

E: expression S: statement F : function P : program x ∈ I n ∈ Z ♦b ∈ {+, -, *, /, %, <, <=, ==}
Figure 1. A imperative kernel language IKL. I and Z denote the set of identifiers and integer values, respectively.

NOTATIONS:
〈e, ε〉 → 〈n, ε′〉 : evaluation of e in state ε yields the result n along with new state ε′
〈s, ε〉 → ε′ : execution of statement s in state ε terminates in the final state ε′

EXPRESSIONS:

〈n, ε〉 → 〈n, ε〉 〈x, ε〉 → 〈Δ(x), ε〉 INT 〈x, ε〉 → 〈x, ε〉 PTR
(e, x) ∈ σ

〈*e, ε〉 → 〈Δ(x), ε〉 INT
(e, p) ∈ σ

〈*e, ε〉 → 〈p, ε〉 PTR

〈e1, ε〉 → 〈n1, ε
′〉

〈e2, ε′〉 → 〈n2, ε
′′〉

〈n1♦bn2, ε
′′〉 → 〈n, ε′′〉

〈e1♦be2, ε〉 → 〈n, ε′′〉

〈e, ε〉 → 〈n, ε′〉
〈c〉U = n
〈c〉S = n′

〈u2s(e), ε〉 → 〈n′, ε′〉

〈e, ε〉 → 〈n, ε′〉
〈c〉S = n
〈c〉U = n′

〈s2u(e), ε〉 → 〈n′, ε′〉

〈e, ε〉 → 〈n, ε′〉
〈c[l]〉 = n
〈c[l−1]〉 = n′

〈trunc(e), ε〉 → 〈n′, ε′〉

〈e, ε〉 → 〈n, ε′〉
〈c[l]〉 = n

〈ext[l+1](c[l])〉 = n′

〈ext(e), ε〉 → 〈n′, ε′〉

〈e, ε〉 → 〈n, ε′〉
〈(e), ε〉 → 〈n, ε′〉 〈&x, ε〉 → 〈&x, ε〉 〈malloc, ε〉 → 〈malloc, ε〉 〈null, ε〉 → 〈null, ε〉

em1 , . . . , emu are integers, emu+1 , . . . , emt are pointers, {m1, . . . ,mt} is a permutation of {1, . . . , t}
〈em1 , ε〉 → 〈nm1 , ε1〉 · · · 〈emu , εu−1〉 → 〈nmu , εu〉 Δ′ = Δu[x.xm1 ← nm1 , . . . , x.xmu ← nmu]

σ′ = σu ∪
⎛
⎝ t⋃

i=u+1

⋃
(emi

,y)∈σu or emi
=&y

(x.xmi , y)

⎞
⎠ ε′ = (Δ′, σ′) x(x1, . . . , xt){s return e} 〈s, ε′〉 → ε′′ 〈e, ε′′〉 → 〈n, ε′′′〉

〈x(e1, . . . , et), ε〉 → 〈n, ε′′′〉
STATEMENTS:

〈skip;, ε〉 → ε

Δ′ = Δ[x← 0]

〈vari x;, (Δ, σ)〉 → (Δ′, σ) 〈varp x;, ε〉 → ε

〈s1, ε〉 → ε′
〈s2, ε′〉 → ε′′

〈s1 s2, ε〉 → ε′′
〈e, ε〉 → 〈n, ε′〉

〈output e;, ε〉 → ε′

〈e, ε〉 → 〈n, ε′〉 Δ′′ = Δ′[x← n]

〈x = e, ε〉 → (Δ′′, σ′)
INT

σ′ = σ ∪ (x, p) where (e, p) ∈ σ or e = &p

〈x = e, ε〉 → (Δ, σ′)
PTR

〈e, ε〉 → 〈n, ε′〉 (x, y) ∈ σ′ Δ′′ = Δ′[y ← n]

〈*x = e, ε〉 → (Δ′′, σ′)
INT

σ′ = σ ∪ (y, p) where (x, y) ∈ σ, (e, p) ∈ σ or e = &p

〈*x = e, ε〉 → (Δ, σ′)
PTR

〈e, ε〉 → 〈1, ε′〉 〈s1, ε′〉 → ε′′

〈if(e) {s1} else {s2}, ε〉 → ε′′
IF-T

〈e, ε〉 → 〈0, ε′〉 〈s2, ε′〉 → ε′′

〈if(e) {s1} else {s2}, ε〉 → ε′′
IF-F

〈e, ε〉 → 〈1, ε′〉 〈s;while(e) {s}, ε′〉 → ε′′

〈while(e) {s}, ε〉 → ε′′
WHILE-T

〈e, ε〉 → 〈0, ε′〉
〈while(e) {s}, ε〉 → ε′

WHILE-F

Figure 2. The operational semantics of IKL.

∈ {u2s, s2u, trunc, ext}.
We denote by ε � eT indicating that integer errors occur
in evaluation of expression e in current program state ε and
ε � eF vice versa.

Integer error is propagative. Consider an expression e
and its sub-expression e′, if ε � e′T , then ε � eT

probably holds. For example, given a = 11111111, b =
00000001, c = 00000001 with unsigned encoding, we have
a+ b = 00000000. The overflow of a+ b leads to incorrect
evaluation of a+b+c though addiction of c and the result of
a+b produces correct result. On the other hand, integer error
is accumulative. It is possible that an erroneous evaluation
can neutralize another one to yield a correct result finally.
Consider the expression a + b − c on the same context as
above. a + b overflows and 00000000 − c = 11111111
underflows, but the final evaluation result is correct since
〈a+b−c〉U = 63. Hence, the relation between integer error

and program bug is quite hard to determine.
Aside from analyzing integer errors by employing sophis-

ticated techniques, a straightforward solution is to univer-
sally utilize the arithmetic of ∞-bit bit-vector with two’s
complement encoding in program. By this setting, arithmetic
operations always yield desired results under arithmetic over
Z while type casts are no longer required. In principle, this
solution could fix most integer errors, but is infeasible for
immutable parts of program. For example, passing an out-of-
range value as function argument is prohibited because value
of argument is bounded by the signature of corresponding
function. Hence, not all kinds of integer errors could be
tolerated, i.e. fixed by improving precision of integers.
Overflow errors in function argument or value for output
involve violation of program constraints.

Definition 2. Given a program P and its expression e, we
say e is externally constrained if its evaluation result ranges
in a specific set E, which is irrelevant to current program

4

state. Formally, for any program states ε of P , we have
〈e, ε〉 → 〈n, ε′〉 and n ∈ E. We use the notation e ⇓ E to
denote that e is externally constrained by the set E.

Definition 3 (Tolerability). Given a program P and its state
ε, ε � eT and e ⇓ E. The integer error in evaluating e is
intolerable:
• if e ::= e1♦be2 such that 〈e1, ε〉 → 〈n1, ε

′〉 and
〈e2, ε′〉 → 〈n2, ε

′′〉 and we have n1�bn2 /∈ E where
�b ∈ {+,−,×, /,mod, <,≤,=}, ♦b and �b are cor-
responding operators;

• if e ::= cast(e1) such that 〈e1, ε〉 → 〈n1, ε
′〉 and we

have n1 /∈ E where cast ∈ {u2s, s2u, trunc, ext}.
Otherwise this error is tolerable.

Consider three unsigned 64-bit integers x, y, z and a
program state ε which maps x, y, z to 264 − 1,1 and 1
respectively. For the expression x + y − z we have ε �
(x+ y)T and this error is tolerable. However, for statement
output (x+ y) we also have ε � (x+ y)T but this error is
intolerable since (x+ y) ⇓ [0, 264 − 1].

An intolerable error is not intractable. Developers should
be aware of external constraints on certain expression and
prevent them from having an illegal value. For example, to
address the issue of illegal argument in function call, one can
sanitize certain argument expression to prohibit out-of-range
value by halting the program with error message. Obviously,
such fix jeopardizes continued execution.

III. CODE TRANSFORMATION

This paper describes a code transformation technique to
fix C integer errors. The general idea is to utilize integers
of infinite size with two’s complement encoding in place of
original bounded integers. Expression in critical sites such
as I/O operation and function call are sanitized such that
its value satisfies corresponding external constraint. In fact,
we cannot precisely represent an integer of infinite size on
machine. A practical solution is to use dynamic-precision
value, which has limited size at initial and is extended on
demand. In the following, we use the identifier with a hat
(e.g. x̂) to denote a dynamic-precision integer value.

To simplify the presentation, we extend IKL with fail
and conditional expression E ? E : E. The expression
fail makes the program halt when it is being evaluated
and it can also be a standalone statement. The conditional
expression has three operands while the first one is controller
expression determining which operand is evaluated as the
value of the whole expression. The operational semantics of
conditional expression is formally defined in Figure 3.

〈e0, ε〉 → 〈1, ε′〉 〈e1, ε′〉 → 〈n1, ε
′′〉

〈e0 ? e1 : e2, ε〉 → 〈n1, ε
′′〉 COND-T

〈e0, ε〉 → 〈0, ε′〉 〈e2, ε′〉 → 〈n2, ε
′′〉

〈e0 ? e1 : e2, ε〉 → 〈n2, ε
′′〉 COND-F

Figure 3. The operational semantics of conditional expression.

A new predicate P (e, E) is introduced to indicate whether
the value of expression e is in the interval E. P (e, E) is true

under program state ε if and only if 〈e, ε〉 → 〈n, ε′〉 and
n ∈ E hold. P (e, E) can be represented in IKL expression
denoted by inRange(e, E).

The transformation rules for IKL program are presented
in Figure 4. For each rule, the top part contains auxiliary
computations and checks, if successful the transformation at
bottom is performed. Given a program, we apply transfor-
mation to its syntactic elements in post-order of its abstract
syntax tree. The basic idea of transformation is that, for
each integer variable x in the original program, we create
x and its lifted variable x̂ in the new program. x̂ is used
for dynamic-precision integer operations while x is used for
pointer manipulation. To keep the consistency of x and x̂,
we synchronize their values when either of them is changed.
For directly assignment (e.g. x = e;), we directly assign
the value of ê to x̂ and update x accordingly. It is possible
that x̂ is not representable in the original type of x, we do
not regard it as an error instantly because the inconsistency
matters only when x is directly used for pointer manipula-
tion. For indirect assignment (e.g. *p = e;), value of ê is
checked to ensure that it can be correctly stored in *p. If
the check passes, the target of p is required for updating
associated dynamic-precision variable consistently. We infer
point-to relations with Σ : X → 2X on the fly. Σ maps a
pointer to the set of all possible targets. If Σ(p) = {q} and
q is an integer then we update q̂ accordingly because p must
point to q. If Σ(p) = {v1, . . . , vn} and n > 1, then we
synchronize each v̂i with vi because p may point to any vi.

Table I
FOUR PATTERNS OF INTOLERABLE ERRORS IN IKL. ALL BOXED

EXPRESSIONS ARE INTEGERS.

pattern constraint

e(. . . ei ,...) Ei (type of ei)

*x = e ; Ex (type of *x)

output e ; Eo (range of valid output value)

x(x1, . . . , xt){s return er ;} ER (type of x’s return value)

By observing rules in Figure 4, we summarize four pat-
terns of intolerable errors shown in Table I. The expression
enclosed by a box is called suspicious operand because its
error is intolerable. In transformed code, sanitizations are
used to protect suspicious operands against illegal values.
We implement sanitizations with a series of check functions.
Each check function accepts a dynamic-precision integer,
returns it unchanged if it is in the specified range and halt the
program otherwise. For example, check_E_o() checks if
accepted integer is in the range of Eo and its implementation
is presented at the bottom of Figure 4.

Code transformation based on rules in Figure 4 is conser-
vative. Roughly speaking, transformed code behaves differ-
ently only on inputs that trigger integer errors in the original
program. To formally prove this property, we introduce a
definition of sanity state for expression.

Definition 4 (Sanity state). An expression e is evaluated on
the state ε = (Δ, σ). If no integer errors occur in every step
of evaluation, we say ε is a sanity state for e. A statement
s is executed on the state ε and if no integer errors occur in

5

n −→ n

x is an integer

x −→ x̂

x is a pointer

x −→ x e1♦be2 −→ ê1♦bê2 (e) −→ (ê) input −→ input malloc −→ malloc

*e −→ *e null −→ null cast(e) −→ ê

x is an integer, its type constraint is Ex

&x −→ inRange(x̂, Ex) ? &x : fail

x is a pointer

&x −→ &x

em1 , . . . , emu are integers, their type constraints are Em1 , . . . , Emu respectively, other arguments are pointers 1 ≤ i ≤ u and j > u

e(e1, . . . , et) −→ e(. . . conv(check_E_mi(êmi)) . . . êmj . . .)

skip; −→ skip; s1 s2 −→ ŝ1 ŝ2 vari x; −→ vari x;vari x̂; varp x; −→ varp x;

e is an integer

x = e; −→ x̂ = ê; x = conv(x̂);
INT

e is a pointer

x = e; −→ x = e;
PTR

Eo is the constraint on the value to be output

output e; −→ output conv(check_E_o(ê));

Σ(x) = {y} *x ⇓ Ex y is an integer

*x = e; −→ y = conv(check_E_x(ê)); ŷ = conv(y);
INT-SINGLE

e is a pointer

*x = e; −→ *x = e;
PTR

Σ(x) = {v1, . . . , vn} n > 1 *x ⇓ Ex v1, . . . , vn are integers

*x = e; −→ *x = conv(check_E_x(ê)); v̂1 = conv(v1); . . . v̂n = conv(vn)
INT-MULTI

if(e){s1} else {s2} −→ if(ê){ŝ1} else {ŝ2} while(e){s} −→ while(ê){ŝ}
er is an integer constrained by ER

x(x1, . . . , xt){s return er;} −→ x(x1, . . . , xt){ŝ return conv(check_E_R(êr));}
INT

er is a pointer

x(x1, . . . , xt){s return er;} −→ x(x1, . . . , xt){ŝ return êr;}
PTR

check_E_o (ê) { vari î; î = ê; if(inRange(̂i,Eo)){ skip; } else { fail; } return î; }

Figure 4. Rules for transforming a IKL program. conv is a notation representing a conversion from an integer to a new one of expected type to keep
well-typedness. A check function returns a valid numerical value only if its arguments values in the specified range. An implementation example of
check_E_o() is shown at the bottom of figure.

every step of s’s execution, ε is a sanity state for s.

We also introduce the concept of equivalent states. Given
a program P with a state ε = (Δ, σ) and its transformation

P̂ with a state ε = (Δ, σ), ε and ε are equivalent under
transformation if (1) for each x ∈ X with integer value, we
have Δ(x) = Δ(x̂) = Δ(x); (2) σ = σ. Without ambiguity,
we simply say ε and ε are equivalent, which is denoted by
ε ∼ ε. The following theorems show that given a sanity state
and its equivalent one: (1) the execution of a statement and
its transformation results in equivalent final states; (2) an
expression and its transformation are evaluated to the same
results along with equivalent final states.

Theorem 1 (Conservativeness). A statement s has a sanity
state ε and its transformation is ŝ. 〈s, ε〉 → ε′ and 〈ŝ, ε〉 → ε′
where ε ∼ ε. Then we have ε′ ∼ ε′.

Two pointers p1, p2 are equal if one of the following cases
holds: (1) Both are null or malloc (2) p1 and p2 point to
pointers p′1, p

′
2 respectively and p′1 = p′2; (3) p1 and p2 point

to the same integer variable.

Theorem 2. An expression e has sanity state ε and its
transformation is ê. 〈e, ε〉 → 〈n, ε′〉 and 〈ê, ε〉 → 〈n, ε′〉
where ε ∼ ε. Then we have n = n and ε′ ∼ ε′.

Proof Sketch of Theorem 1 and Theorem 2: Propositions
of Theorem 1 and Theorem 2 are denoted by Q(s) and
R(e) respectively. To prove ∀s.Q(s)∧∀e.R(e), we perform
structure induction jointly on statements and expressions.

Program execution can be regarded as a function call
of its main function. Therefore, executing a program and

its transformation on the equivalent sanity states yields the
same results along with equivalent final states. In other
words, transformed code behaves differently only on the
state causing errors in the original program.

IV. CINTFIX: A TOOL TO FIX C INTEGER ERRORS

A. Overview

Source

Fixed Code

Pointer

Analysis

Alias

Analysis

Context Manager

Pre-

processing

Code

Transformation

Post-

processing

Translation

Unit

Figure 5. The workflow of CIntFix.

We implement a prototype tool CIntFix to automatically
fix C integer errors by dynamic precision improvement.
Figure 5 illustrates the architecture of CIntFix. It takes a
source file as input, and outputs the fixed one. The first step
is to preprocess input source code to obtain a translation unit
where all preprocessor directives are eliminated. Then, code
transformation rules are applied to translation unit. Context
manager conducts alias and pointer analysis on the fly. The
former is required to correctly recognize integer variables
while the latter is important for value consistency in pointer
manipulations. Finally, we restore preprocessor directives
and make beautification for transformed code.

6

To implement dynamic-precision integer arithmetic in
fixed C program, we use GMP1 which is a carefully designed
and highly optimized library supporting arbitrary precision
arithmetic. To simplify the fixed code, we also create a li-
brary to support sanity check for integer operation including
various check functions. Our tool can be applied to existing
C project by slightly modifying the Makefile.

All source code of CIntFix is publicly available2.

B. Implementation Issues

Real world C programs involve a richer set of C features.
They are handled by CIntFix in the following ways.

External variables: CIntFix does not elevate any external
variable because its definition is out of the scope of program
to be analyzed.

Data structures: C supports data structures including
array, structure and union. Their memory layouts have
specific patterns instead of amorphous structures. CIntFix
does not alter definitions of data structures and the reasons
are twofold. First, changing memory layout hinders the
correctness of program especially for pointer manipulations.
Second, definition of data structure is part of developer’s
design. Developer is responsible for a correct design while
CIntFix is responsible for fixing faulty implementation.

Library calls: Library calls are common in C programs
and their sources are generally inaccessible. After a library
call, we synchronize local integer variables used directly or
indirectly in arguments. We assume that other local variables
are unmodified because most real-world library functions
do not require a specific calling context, such as a specific
sequence of variable definitions.

Variadic functions: C supports variadic function which
accepts a variable number of arguments. In principle, it is
impossible to infer types of all arguments because of insuf-
ficient information. CIntFix contains predefined annotations
for library functions such as printf() and is able to infer
types of arguments by parsing the format string. For other
functions, CIntFix will not check values of arguments.

Bit manipulations: C supports various bit manipulations
including bitwise shift and bitwise logical operation. They
are based on bit-vector logic and does not require precision
elevating. Without loss of generality, consider a bitwise
AND expression x&y. We first convert dynamic-precision
integers x̂, ŷ into bounded integers x̃, ỹ while the type of x̃
is consistent with the type of x in original program and so
is the type of ỹ. Then, the resultant expression is x̃&ỹ.

It is worth mentioning that unsigned wraparound is widely
utilized in cryptographic applications and device drivers.
These wrapped values are finally propagated to (1) bit ma-
nipulations; (2) critical sites such as function arguments. For
the former case, CIntFix lazily truncates dynamic-precision
integer to obtain the wrapped value when bit manipulation
is reached. For the latter case, wrapped value is sanitized
because CIntFix is unable to automatically recognize an
intentional wraparound without developer’s hints.

1https://gmplib.org
2http://git.io/vEnHz

Five more patterns of intolerable error are summarized
for C programs and they are shown in Table II. Array index
is bounded by SIZE_MAX because it is the upper bound of
size_t which is the type for memory manipulation.

Table II
NEW INTRODUCED PATTERNS OF INTOLERABLE ERRORS. ALL BOXED

EXPRESSIONS ARE INTEGERS.

pattern constraint

x = e ;, x is global Ex (type of x)

o.i = e ; Eo.i (type of i in object o)

p->i = e ; Ep.i (type of i in object pointed to by p)

p[e] or p + e [-SIZE_MAX, SIZE_MAX]

p[i] = e ; Ep (type of elements in array p)

To discuss the conservativeness, we revise the definition of
state equivalence since some variables could not be elevated.
ε = (Δ, σ) and ε = (Δ, σ) are equivalent if: (1) for each
liftable x ∈ X we have Δ(x) = Δ(x̂) = Δ(x); for other
integers x ∈ X, we have Δ(x) = Δ(x); (2) σ = σ. X

denotes the set of all identifiers in program, including names
of fields and array elements. By structural induction on new
syntactic elements, conservativeness can be proved.

C. A Running Example

Pairs *pairs;
int count, in_count;
...
count = in_count / 2;
pairs = palloc(count * sizeof(Pairs));
...

Listing 2. Possible wraparound on the argument of palloc() leads to
potential buffer overflow, which is a serious security issue.

Pairs *pairs;
mpz_t __HIGHPREC_count, __HIGHPREC_in_count;
mpz_t __HIGHPREC_INTERM_5;
mpz_init(__HIGHPREC_count);
mpz_init(__HIGHPREC_in_count);
mpz_init(__HIGHPREC_INTERM_5);
...
mpz_tdiv_q_ui(__HIGHPREC_count, __HIGHPREC_in_count, 2);
mpz_mul_ui(__HIGHPREC_INTERM_5, __HIGHPREC_count, sizeof(Pairs));
pairs = palloc(__CHECK_GMP_UINT(__HIGHPREC_INTERM_5));
...

Listing 3. Fixed code in hstore_from_array() function. Integer
variables are elevated with additional prefix __HIGHPREC_. Identifiers
with the prefix __HIGHPREC_INTERM_ are new introduced intermediate
variables. __CHECK_GMP_UINT returns unsigned int value of the input
GMP integer if possible and halts the program otherwise.

PostgreSQL is a popular open-source database manage-
ment system. PostgreSQL 9.0.x (before 9.0.16) has multiple
integer overflow bugs in contrib/hstore/hstore_io.c
that can be exploited [14]. Listing 2 shows a code snip-
pet from hstore_from_array(), one of the problematic
functions. If count is a large integer, the argument of
palloc() will be wrapped to a small positive value leading
to buffer overflow. Fixed code is shown in Listing 3. If
the product of __HIGHPREC_count and sizeof(Pairs)
overflows, __CHECK_GMP_UINT() prevents overflown value
for memory allocation by halting the program with error
message. This function is defined in our sanity check library.

7

D. Advantages and Limitations
CIntFix has several advantages. First, the fixing procedure

is syntax-directed and rule-based, which avoids sophisticated
and imprecise analysis. Second, CIntFix works in function-
wise manner and it is possible to apply transformation to
a portion of program code and scale to very large pro-
gram. However, CIntFix possibly misses some integer errors.
CIntFix cannot automatically infer constraints on arguments
of library function without annotations. CIntFix cannot han-
dle C program mixed with assembly code. CIntFix cannot
address errors caused by wrong design, such as faulty
function signatures and data structures. Finally, CIntFix is
unable to tolerate intentional wraparounds which directly
propagate to critical sites.

V. EXPERIMENTAL EVALUATION

We evaluate CIntFix on NIST’s Juliet test suite3 and SPEC
CINT2000 benchmarks for both effectiveness and efficiency.
In CIntFix, implementation of dynamic-precision integer
is based on GMP 6.0.0. All experiments are conducted
on a PC under 64-bit Ubuntu 15.10, using Intel Core i5-
3470@3.20GHz CPU and 20GB memory. In evaluation, we
focus on the following questions:

Q1 Could CIntFix fix both tolerable and intolerable integer
errors in C programs effectively?

Q2 How efficient does CIntFix transform C source code?
Q3 How much overhead is introduced by using dynamic-

precision integers in fixed programs?

A. Evaluation on Juliet Test Suite
NIST’s Juliet test suite is a collection of test bench

programs in C/C++ created by NSA Center for Assured Soft-
ware and developed specifically for assessing the capabilities
for program analysis tools. The latest version is 1.2 released
on May 2013, contains 61387 cases for 118 different CWEs.
Our evaluation is based on version 1.2.

1) Experiment Design: We choose C programs in 7
CWEs shown in Table III. CWE190 and CWE191 refer to
overflow and underflow respectively. They are collectively
known as overflow. CWE194-197 involve with various kinds
of conversion errors such as lossy truncation and sign error.
CWE680 defines a special kind of integer overflow, namely
integer overflow to buffer overflow (IO2BO). It occurs when
an integer overflow causes less memory to be allocated than
expected leading to a buffer overflow.

Before evaluation, test programs should be processed
to facilitate automated experiments. We filter out some
programs that heavily depend on blocking I/O, then specify
inputs for remaining programs of which inputs are usu-
ally from system calls such as fscanf() and rand().
We specify an input for a program by replacing existing
input statement with assignment of this input. For each
test program, the range of bad inputs can be derived from
annotation of code. Thus, we can sample a group of bad
input candidates as reference inputs. By default we sample
20 different reference inputs for each test program. If bad
inputs are insufficient, we just take all of them.

3https://samate.nist.gov/SRD/testsuite.php

Table III
CHOSEN CWES RELATED TO INTEGER ERRORS. C++ TEST PROGRAMS

ARE EXCLUDED.

CWE Description #program #file KLOC
190 Integer Overflow 2052 3024 263.38
191 Integer Underflow 1254 1848 163.65
194 Unexpected Sign Extension 912 1344 108.20

195
Signed to Unsigned
Conversion Error

912 1344 105.46

196
Unsigned to Signed
Conversion Error

18 18 1.55

197 Numeric Truncation Error 684 1008 67.63

680
Integer Overflow to Buffer
Overflow

228 336 26.37

In evaluation, a test program P and its transformation
P ′ are executed with reference inputs. P produces incorrect
results or halts unexpectedly. We say that P ′ is a correct
fixed version of P if and only if P ′ can produce correct
results or halt expectedly for all reference inputs.

2) Experimental Results: We use GCC 5.2.1 to compile
all test programs. All time measures are valued based on the
average time of 10 repeated executions. The experimental
results are presented in Table IV.

Column 2 and 7 show the number of programs and their
files used in evaluation. We can notice that a small portion of
test programs are not evaluated because they depend heavily
on I/O and unsuitable for automatic evaluation. Columns 8-
11 show the performance of code transformation. CIntFix
processes source code at the rate of 0.181s/KLOC, i.e. about
5500 code lines per second. Moreover, fixed code expands
by 23.5% on the measurement of KLOC.

Columns 3-6 present the effectiveness of CIntFix in fixing
integer errors. Notice that errors in CWE680 can be triggered
only if size_t is equivalent to unsigned int. However on
our x64 platform size_t is an alias of unsigned long
int. To trigger anticipated errors, we evaluate CWE680
programs under 32-bit Ubuntu 15.10 in QEMU virtual ma-
chine with 4 CPU cores and 4GB memory. In total, CIntFix
succeeds in fixing every integer error of either tolerable or
intolerable in all 5414 benchmark programs.

The last 3 columns show the efficiency of fixed code. We
discard runtime of some test programs since their executions
are interrupted with segmentation faults given bad inputs.
For normal runs, the average slowdown by fixing is 10.8%.
Notice that for CWE197, fixed programs are even more
efficient than the original ones. This is because sanitizations
work to prevent taint values from further propagation and
thus the fixed programs can terminate early.

B. Evaluation on SPEC CINT2000
The SPEC CPU2000 is an industry-standardized CPU-

intensive benchmark suite, consisting of a selected collection
of C and C++ programs designed to be representative of
a wide range of real-world software. CINT2000 is one of
subcomponents of SPEC CPU2000 for measuring compute-
intensive integer performance and it is used for evaluating
CIntFix. CINT2000 benchmark programs have a collection
of integer errors [7]. Since we do not have full and definite
knowledge on where they are and how to trigger them, this

8

Table IV
RESULTS ON JULIET TEST SUITE. SEG REFERS TO SEGMENTATION FAULT DURING EXECUTION.

CWE #program
#fixed program

#file GT (s)
KLOC runtime (s)

T IT Σ fix rate (%) old new expansion (%) old new overhead (%)
190 1938 1938 0 1938 100.0 2856 39.800 230.06 289.12 25.7 0.037 0.043 16.2
191 1178 1178 0 1178 100.0 1736 22.389 141.39 193.56 36.9 0.022 0.025 13.6
194 760 0 760 760 100.0 1120 12.267 78.96 92.38 17.0 SEG 0.022 N/A
195 760 0 760 760 100.0 1120 13.953 78.40 92.11 17.5 SEG 0.025 N/A
196 18 18 0 18 100.0 18 0.876 1.55 1.9 22.6 0.002 0.002 0.0
197 570 570 0 570 100.0 840 10.453 49.24 49.43 0.4 0.013 0.012 -7.7
680 190 0 190 190 100.0 280 6.324 19.60 22.90 16.8 SEG 0.010 N/A
Σ 5414 3704 1710 5414 100.0 7970 112.109 618.81 764.30 23.5 0.074 0.082 10.8

T/IT: tolerable/intolerable; GT: code generation time

Table V
RESULTS ON SPEC CINT2000.

name #file
KLOC code generation

time (s)
reference
time (s)

base time (s)
old new increment (%) old new overhead (%)

164.gzip 20 5.62 12.71 126.4 1.536 1400 64.292 75.950 18.1
175.vpr 41 11.30 27.31 141.7 2.353 1400 43.758 52.366 19.7
176.gcc 120 149.01 395.53 165.4 11.549 1100 24.978 29.104 16.5
181.mcf 25 1.48 2.75 85.7 1.124 1800 37.614 43.646 16.0
186.crafty 43 12.90 41.79 223.9 2.884 1000 21.267 26.153 23.0
197.parser 18 7.77 24.54 215.8 1.942 1800 68.681 81.207 18.2
253.perlbmk 91 72.10 304.18 321.9 8.085 1800 48.134 55.781 15.9
254.gap 63 35.70 106.84 199.3 4.517 1100 28.146 33.633 18.4
255.vortex 123 49.23 92.04 87.0 4.428 1900 65.705 77.362 17.7
256.bzip2 2 3.23 7.95 146.1 0.982 1500 49.008 58.460 19.3
300.twolf 85 17.82 46.34 160.0 3.154 3000 69.020 81.206 17.7

total 631 366.14 1061.97 190.0 42.554 17800 520.873 614.868 18.0

���

���

���

���

����

����

� �� ��� ���

�	
�

�

�
�
��

�
�
�
��

��

�
��
��

�
��

�
�

�

�

��

��

��

��

� ��� ��� ���
�������������

�
�
��

�
�
�
��

�
�

Figure 6. Correlation analysis of experimental results on SPEC CINT2000.
The left is the correlation of code size and fixing time (ρ = 0.978); the
right is the correlation of increment rate and runtime overhead (ρ = 0.066).
ρ denotes the correlation coefficient.

benchmark is for evaluating fixing efficiency only. Our eval-
uation is based on version 1.2 with necessary modifications.

1) Experiment Design: To measure the efficiency of fixed
code, we compare the execution time of original program
and the fixed one given the same “ref” data sets as inputs.
In order to reduce random error in timing, all time measures
are valued based on the average of 10 repeated runs. We use
all programs except the only one C++ program 252.eon.

2) Experimental Results: We use Clang 3.6.2 with LLVM
3.6.2 to compile test programs and the results are shown
in Table V. Columns 3-6 show the performance of fixing.
On average, CIntFix processes C source code at the rate of
0.116s/KLOC. Fixed code expands aggressively by 190.0%
on average. In particular, the size of 253.perlbmk increases
by more than 2 times after fixing. Columns 8-10 present the
runtime efficiency of fixed code. The average slowdown is
about 18.0% while the highest is 23.0% for 186.crafty.

Furthermore, we analyze correlations between key factors
in experimental results. Figure 6 shows that code size and

time cost of fixing has strong linear dependence. However,
code increment rate and runtime overhead by fixing are
unlikely correlated while the correlation coefficient is 0.066.
Hence, a large increment rate does not imply a significant
slowdown and vice versa, because runtime overhead is
mainly related to complexity of control flow.

C. Discussion

Questions proposed at the beginning of this section in-
volve two main criteria: effectiveness and efficiency. The
former refers to the ability of correctly fixing integer errors
(Q1). The latter has two aspects: the fixing efficiency (Q2)
and runtime performance of fixed code (Q3). In the sequel
we answer these questions with experimental results.
Effectiveness. We evaluate the effectiveness of CIntFix on
Juliet test suite. Experimental results show that CIntFix
succeeds in fixing all 5414 errors in test programs, which
is a strong evidence of CIntFix’s effectiveness. Moreover,
CIntFix generates fixed code without detecting potential
errors in advance. By observing that the nature of integer
errors includes: (1) inconsistent arithmetics over fixed-length
bit-vectors and Z, (2) type unsafe property of C, we directly
elevate precision of program integers to fix potential errors.
Efficiency. Efficiency of CIntFix is evaluated on both Juliet
test suite and SPEC CINT2000 benchmark.

Efficiency of code transformation: On one hand, by the
experimental results, we estimate that CIntFix can process
1 million lines of C source code using about 150 seconds,
which means our tool can be applied to a large software sys-
tem (typically has millions lines of code) with relatively ac-
ceptable time cost. On the other hand, code increment rates
are quite different on two benchmarks. Fixed code expands

9

by 23.5% on Juliet test suite but 190.0% on SPEC CINT
2000. The difference mainly derives from the complexity of
code structure. Programs in Juliet test suite have relatively
simple structures while SPEC CINT2000 bench programs
obtained from real-world software have complicated control
structures and many compound expressions.

Runtime efficiency of fixed code: Fixed code has moderate
runtime overhead on two benchmarks (10.8% on Juliet test
suite and 18.0% on SPEC CINT2000) and the reasons are
twofold. First, dynamic-precision integer is extended on
demand and it is rare to yield an integer of very large
length in computation. In practice, overhead brought by
manipulating dynamic-precision integers is limited. Second,
fixed program basically keeps the design of original program
except for additional sanitizations which are usually cheap.
All in all, the overhead introduced by fixing is non-negligible
but acceptable for many applications. Moreover, runtime
overhead has no necessary (or very weak) correlation with
code increment rate by fixing. Therefore a significantly
expanded fixed program is not necessarily unacceptable on
runtime slowdown and vice versa.

Memory efficiency of fixed code: Memory efficiency is
not discussed in detail since in most scenarios time re-
source is more critical than memory. Generally speaking,
the fixed program consumes more memory than the original
because of introduction of dynamic-precision integers. To
reduce memory overhead, we apply several optimizations
in generating fixed code including controlling number of
introduced temporary variables for carrying intermediate
results and freeing dynamic integers timely when they are no
longer needed in sequel computation. In experiments, fixed
programs run normally without memory issues.

VI. RELATED WORK

Static analysis: One class of static analysis is symbolic
execution, which systematically explores all possible paths
by treating inputs as symbolic values. Symbolic execution
based techniques attempt to find inputs exposing integer er-
rors following a specific control flow. Example tools include
PREfix [15], SmartFuzz [11], IntScope [12] and KINT [8].
In particular, KINT performs symbolic analysis in function-
wise manner and succeeded in identifying more than 100
integer errors in Linux kernel. In general, these techniques
achieve high coverage but suffer from path explosion and
inability of solving complicated path constraints.

Abstract interpretation [16] based techniques [8], [17]
soundly approximate semantics of program by employing
range analysis [18] or taint analysis [19] , and locate
potential errors accordingly. They have acceptable scalability
for large programs but report many false positives.

Given error condition, a program can be model checked
by verification tools such as BLAST [20], CBMC [21] and
LLBMC [22]. Model checking is sound and complete for
many practical models and specifications, but generally has
poor scalability for verifying large programs.
Dynamic analysis: Dynamic techniques insert checks to
capture integer problems at runtime. Some techniques are
source-oriented. RICH [9] captures errors based on safe

integer semantics derived by applying sub-type theory.
IOC [7] detects overflow errors in compile-time integrated
with Clang. The AIR [23] model provides well-defined
semantics for integer-related undefined behavior and guaran-
tees that an integer operation either produces a representable
result or trap. RA [17] reduces unnecessary checks by
employing range analysis. IntPatch [24] and IntTracker [25]
focus on detecting IO2BO vulnerabilities. Some techniques
are binary-oriented. BRICK [13] emulates binaries using
a Valgrind [26] based virtual machine and detects errors
dynamically. Overall, dynamic analysis reports real errors
without applying sophisticated approximations on control
flow of program, while the main drawback is low code
coverage and non-negligible overhead at runtime.
Safe library support: To prevent integer errors in develop-
ing phase, safe libraries such as CERT’s SafeInt [27] and
Ranged Integer [28] are available to support trusted integer
operations. These libraries, however, are mostly unverified
and reported to contain integer errors in implementation [7].
Moreover, library functions have low tolerability for errors,
which makes developed program highly failure-sensitive.
Error nullification: Integer errors can be nullified by dis-
carding or changing inputs that possibly trigger integer errors
in programs. SIFT [10] employs an interprocedural, weakest
precondition static analysis to propagate critical constraints
backwards against control flow to generate input filter and
it is proved to be sound [29]. Anomaly detection tech-
nique [30]–[32] generates input filters by learning properties
from benign and bad inputs. These techniques are generally
incomplete and incapable to provide sufficient information
on faulty program data and structures.
Integer error repair: Various automatic program repair
techniques are proposed for generic bug fixing. Generate-
and-validate techniques heuristically generates candidate
patches and searches the appropriate one by validating given
test suite. Example tools include GenProg [33], AE [34],
SPR [35] and Prophet [36]. Semantics based synthesis
techniques solve constraint of correctness conditions and
synthesis new expressions conforming the specification ac-
cordingly. Example tools include SemFix [37] and Direct-
Fix [38]. Generic bug fixing techniques have two main draw-
backs. First, the completeness of generated patch relies on
given specification, which is usually insufficient in practice.
Second, generated patches rare ensure correctness according
to a study [39]. Some techniques are proposed specifically
for integer errors. Z. Coker et al. [40] introduce three trans-
formations rules to generate fixed program. However, this
method relies on limited information from type inference
and wraps integer operations with safe integer functions
which is not failure-oblivious.

VII. CONCLUSION

In this paper we proposed a novel approach to automat-
ically fix C integer errors by elevating precision. Dynamic-
precision program integers can precisely simulate mathemat-
ical integers such that many integer errors can be tolerated.
To fix a program, we directly apply rule-based code transfor-
mation on the source code without employing sophisticated

10

and expensive analysis to find possible errors. This technique
is proved to be conservative which ensures that all sanity
behaviors are kept unchanged in fixed program. We also
introduce the design and implementation of the tool CIntFix
and evaluate it using standard benchmarks. The results show
that (1) CIntFix can effectively fix various kinds of integer
errors; (2) CIntFix can efficiently generate fixed code; (3)
fixed code has non-negligible but acceptable slowdown.

In our future work, we intend to evaluate CIntFix with
more programs and analyze fixed code in instruction level
in order to better understand the effectiveness and efficiency
of our approach. Moreover, we aim to enhance CIntFix to
support repairing of data structures and function signatures
instead of simply sanitizing them.

ACKNOWLEDGMENT

This research is sponsored in part by National Natural Sci-
ence Foundation of China (Grant No. 91218302, 61402248)
and the Ministry of Industry and Information Technology IT
funds (Research and application of TCN key technologies)
of China.

REFERENCES

[1] Wikipedia, “Ariane 5 Flight 501,” https://en.wikipedia.org/
wiki/Ariane_5_Flight_501.

[2] N. Y. Times, “F.A.A. Orders Fix for Possible Power Loss in
Boeing 787,” http://www.nytimes.com/2015/05/01/business/
faa-orders-fix-for-possible-power-loss-in-boeing-787.html.

[3] “CVE-2010-2753,” http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2010-2753.

[4] “CVE-2015-865,” http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-865.

[5] S. Christey and R. A. Martin, “Vulnerability Type Dis-
tributions in CVE,” http://cve.mitre.org/docs/vuln-trends/
vuln-trends.pdf, 2007.

[6] S. Christey, B. Martin, M. Brown, A. Paller, and D. Kirby,
“2011 CWE/SANS Top 25 Most Dangerous Software Errors,”
http://cwe.mitre.org/top25/, 2011.

[7] W. Dietz, P. Li, J. Regehr, and V. S. Adve, “Understanding
integer overflow in C/C++,” in ICSE, 2012, pp. 760–770.

[8] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek,
“Improving integer security for systems with KINT,” in OSDI,
2012, pp. 163–177.

[9] D. Brumley, D. X. Song, T. Chiueh, R. Johnson, and H. Lin,
“RICH: automatically protecting against integer-based vulner-
abilities,” in NDSS, 2007.

[10] F. Long, S. Sidiroglou-Douskos, D. Kim, and M. C. Rinard,
“Sound input filter generation for integer overflow errors,” in
POPL, 2014, pp. 439–452.

[11] D. Molnar, X. C. Li, and D. Wagner, “Dynamic test gener-
ation to find integer bugs in x86 binary linux programs,” in
USENIX Security Symposium, 2009, pp. 67–82.

[12] T. Wang, T. Wei, Z. Lin, and W. Zou, “Intscope: Automat-
ically detecting integer overflow vulnerability in X86 binary
using symbolic execution,” in NDSS, 2009.

[13] P. Chen, Y. Wang, Z. Xin, B. Mao, and L. Xie, “BRICK: A
binary tool for run-time detecting and locating integer-based
vulnerability,” in ARES, 2009, pp. 208–215.

[14] “CVE-2014-2669,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2014-2669.

[15] Y. Moy, N. Bjørner, and D. Sielaff, “Modular bug-finding for
integer overflows in the large: Sound, efficient, bit-precise
static analysis,” Tech. Rep. MSR-TR-2009-57, 2009.

[16] P. Cousot and R. Cousot, “Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints,” in POPL, 1977, pp. 238–252.

[17] R. E. Rodrigues, V. H. S. Campos, and F. M. Q. Pereira, “A
fast and low-overhead technique to secure programs against
integer overflows,” in CGO, 2013, pp. 33:1–33:11.

[18] W. H. Harrison, “Compiler analysis of the value ranges for
variables,” IEEE Trans. Software Eng., vol. 3, no. 3, pp. 243–
250, 1977.

[19] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask),” in
IEEE S&P, 2010, pp. 317–331.

[20] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The
software model checker blast,” STTT, vol. 9, no. 5-6, pp. 505–
525, 2007.

[21] D. Kroening and M. Tautschnig, “CBMC - C bounded model
checker - (competition contribution),” in TACAS, 2014, pp.
389–391.

[22] S. Falke, F. Merz, and C. Sinz, “The bounded model checker
LLBMC,” in ASE, 2013, pp. 706–709.

[23] R. B. Dannenberg, W. Dormann, D. Keaton, R. C. Seacord,
D. Svoboda, A. Volkovitsky, T. Wilson, and T. Plum, “As-if
infinitely ranged integer model,” in ISSRE, 2010, pp. 91–100.

[24] C. Zhang, T. Wang, T. Wei, Y. Chen, and W. Zou, “Intpatch:
Automatically fix integer-overflow-to-buffer-overflow vulner-
ability at compile-time,” in ESORICS, 2010, pp. 71–86.

[25] H. Sun, X. Zhang, C. Su, and Q. Zeng, “Efficient dynamic
tracking technique for detecting integer-overflow-to-buffer-
overflow vulnerability,” in ASIACCS, 2015, pp. 483–494.

[26] N. Nethercote and J. Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation,” in PLDI, 2007,
pp. 89–100.

[27] D. LeBlanc, “SafeInt,” https://safeint.codeplex.com/, 2014.
[28] J. Gennari, S. Hedrick, F. Long, J. Pincar, and R. C. Seacord,

“Ranged integers for the c programming language,” Tech.
Rep. CMU/SEI-2007-TN-027, 2007.

[29] F. Long, S. Sidiroglou-Douskos, D. Kim, and M. Rinard,
“Sound input filter generation for integer overflow errors,”
Tech. Rep. MIT-CSAIL-TR-2013-018, 2013.

[30] D. Gao, M. K. Reiter, and D. X. Song, “On gray-box
program tracking for anomaly detection,” in USENIX Security
Symposium, 2004, pp. 103–118.

[31] C. Krügel and G. Vigna, “Anomaly detection of web-based
attacks,” in CCS, 2003, pp. 251–261.

[32] W. K. Robertson, G. Vigna, C. Krügel, and R. A. Kemmerer,
“Using generalization and characterization techniques in the
anomaly-based detection of web attacks,” in NDSS, 2006.

[33] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Au-
tomatically finding patches using genetic programming,” in
ICSE, 2009, pp. 364–374.

[34] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program
equivalence for adaptive program repair: Models and first
results,” in ASE, 2013, pp. 356–366.

[35] F. Long and M. Rinard, “Staged program repair with condi-
tion synthesis,” in SIGSOFT/FSE, 2015, pp. 166–178.

[36] F. Long and M. Rinard, “Automatic patch generation by
learning correct code,” in POPL, 2016, pp. 298–312.

[37] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“Semfix: program repair via semantic analysis,” in ICSE,
2013, pp. 772–781.

[38] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking
for simple program repairs,” in ICSE, 2015, pp. 448–458.

[39] Z. Qi, F. Long, S. Achour, and M. C. Rinard, “An analysis
of patch plausibility and correctness for generate-and-validate
patch generation systems,” in ISSTA, 2015, pp. 24–36.

[40] Z. Coker and M. Hafiz, “Program transformations to fix C
integers,” in ICSE, 2013, pp. 792–801.

11

