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Abstract—Integer errors in C/C++ are caused by arithmetic
operations yielding results which are unrepresentable in certain
type. They can lead to serious safety and security issues. Due
to the complicated semantics of C/C++ integers, integer errors
are widely harbored in real-world programs and it is error-
prone to repair them even for experts. An automatic tool is
desired to 1) automatically generate fixes which assist developers
to correct the buggy code, and 2) provide sufficient hints to
help developers review the generated fixes and better understand
integer types in C/C++. In this paper, we present a tool IntPTI
that implements the desired functionalities for C programs.
IntPTI infers appropriate types for variables and expressions
to eliminate representation issues, and then utilizes the derived
types with fix patterns codified from the successful human-written
patches. IntPTI provides a user-friendly web interface which
allows users to review and manage the fixes. We evaluate IntPTI
on 7 real-world projects and the results show its competitive
repair accuracy and its scalability on large code bases. The demo
video for IntPTI is available at: https://youtu.be/9Tgd4A_FgZM.

Index Terms—integer error, type inference, fix pattern

I. INTRODUCTION

In C/C++ programs, integer arithmetic operations (e.g.
addition and assignment) may produce results that the certain
expression type cannot represent, and such values are conver-
ted somehow to fit the target type. Some conversions are well-
defined (e.g. unsigned wraparound) by the language standard
but others are undefined (e.g. signed overflow). Integer errors
are generally caused by misuse of well-defined conversions or
undefined behaviors due to developer’s empirical certainty of
expected outcomes. Integer error is known to be one of the
main threats to the safety and security of software system. A
potential total power loss in Boeing 787 Dreamliners [1] was
caused by the signed overflow of a 32-bit counter. Multiple
integer errors in Linux kernel can be exploited for denial-of-
service attacks [2] or privilege escalations [3]. A CVE report
in 2007 [4] suggests that integer overflow error is the second
most common vulnerability in the advisories for OS vendor.

Challenge. It is error-prone to correctly repair integer errors
even for experts due to the complicated semantics of integers
in C/C++. The machine representation of an integer is a fixed-
size bit-vector restricted by its type-specific characteristics:
signedness and width. Generally, the semantics over fixed-size
bit-vectors and Z are inconsistent. For example, (x − y >
0)⇐⇒ (x > y) holds over Z, but no longer holds over fixed-
size bit-vectors owing to the overflow in x − y. Even worse,
not all integer arithmetic operations are well-defined. Although
undefinedness grants compilers freedom to generate efficient
code by exploiting specific properties of a certain instruction

set, it could lead to unexpected runtime behaviors across
different architectures or optimization levels. For example, an
overflow in signed addition silently wraparounds on x86 but
traps on MIPS [5].

Related Work. Numerous automatic solutions for integer
errors have been proposed, but they have various limitations
in real-world applicability. One thread of the related work
focuses on integer error detection by symbolic execution [6],
[7], [8], static analysis [9] or code instrumentation [10], [11],
[12]. These tools produce reports on where integer errors are
and how to trigger them, but they are unable to guide deve-
lopers to correct the buggy implementation. Generic program
repair techniques are proposed to automatically correct the
implementation with its specifications. They generate patches
that address certain defects by, typically, validating heuristi-
cally generated patches with test suites [13], [14], [15], [16],
[17], [18], or synthesizing desired expressions with respect to
constraints derived from test suites [19], [20], [21], [17]. The
effectiveness of these tools, however, heavily relies on specifi-
cations which are often insufficient in practice. Moreover, even
the state-of-the-art generate-and-validate systems do not scale
to large software systems with thousands of potential defects
as they generally require hours to find a plausible patch for
one real-world bug. Some tools are designed for integer errors
specifically [22], [23]. They transform the internal integer
model of a program towards a safer model but an excessive
number of unnecessary changes are made in the program.

Approach. We present IntPTI, an automatic tool that ge-
nerates and applies fixes for integer errors in C programs. It
aims to assist developers and testers to improve code quality
against integer errors. First, IntPTI preprocesses the source
files on the fly in the building process. Next, IntPTI computes
the appropriate types (i.e. proper-types) for variables and
expressions to eliminate representation issues and generates
fixes by utilizing proper-types. Then, users interact with IntPTI
via a web interface to review fixes. Finally, accepted fixes are
collected and applied to the source code. Users can benefit
from IntPTI as it proposes fixes for possible integer errors
with proper explanations, which helps users to (1) locate the
new integer errors in code and repair them correctly, (2) better
understand the integer types in C language.

Our key approach is proper-type inference, which finds
appropriate types for expressions and variables such that each
expression has the type that covers all its possible values.
The goal of proper-type inference is achieved by static value
analysis (§II-B, which approximates possible values of ex-
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τ ::= ς | τ∗ | void | struct{τc1; . . . τcn} | τ(τ, . . . τ)
e ::= n | x | e.c | e♦e | (τ)e | ∗e | &e | e := e | f(e, . . . e)

Fig. 1. The core language syntax.

pressions) and type inference (§II-A, which computes types
for expressions and variables with respect to the proper-type
property and the well-typedness of program). Inferred types
are utilized to generate fixes (§II-C) by common fix patterns
codified from the real world: sanity check, explicit type casting
and declared type changing. For the scalability in real-world
projects, IntPTI adopts multi-entry analysis (§II-D) to run
proper-type inference in the compositional manner.

To demonstrate the accuracy and runtime efficiency of
IntPTI, we apply it to 7 widely-used open-source projects with
known integer vulnerabilities. The results show that IntPTI
succeeds in repairing 23 out of 25 defects. Furthermore, IntPTI
substantially addresses the limitations of existing tools as it: 1)
does not rely on specifications such as test suites, 2) generates
fixes with proper explanations of why the fix is generated
and how it transforms the code, 3) reduces false-positives
(i.e. fixes that correspond to no genuine bugs) on the critical
program sites (where attacks are typically performed on the
subject programs) by 93.3% compared to the state-of-the-art
approach [22], and 4) scales to large code bases as it spends
no more than 11 minutes on Vim with over 244 KLOC.

Contribution. Main contributions are summarized as:
1) We propose a novel approach that automatically generates

fixes under appropriate patterns via type inference.
2) We implement our approach as a tool IntPTI. It is de-

signed for complex realistic C code bases and provides a
user-friendly interface for users who are unfamiliar with
program analysis techniques.

3) We evaluate IntPTI on 7 open-source projects. The results
show its competitive repair accuracy and runtime efficiency,
which substantiates that our tool is of practical concern.

II. APPROACH OVERVIEW

Generally, IntPTI repairs C integer errors by three main
steps: 1) static value analysis, 2) proper-type inference and
3) fix generation. For the scalability of IntPTI, multi-entry
analysis is employed to divide-and-conquer the fix generation
task on the whole program.

A. Proper-Type Inference

We present a C-like kernel language shown in Fig. 1 to
formalize our discussion. The language models expressions
including integer literals, variables, structure members, binary
expressions (the operator ♦ can be arithmetic or logical),
cast expressions, pointer dereferences, address-of expressions,
assignments and library calls. There can be multiple kinds
of integer types varying on length and/or signedness. Each
expression has a type which can be integer type (ς), pointer
type, structured type and function type. A program consists of
variable declarations and expressions. Let J·K : E → 2Z map
an expression to its possible values and L·M : T → 2Z map
a type to values that it can represent. We say that τ is the
proper-type of an arithmetic expression e if JeK ⊆ LτM.

To derive proper-types, we scan the program and collect
constraints on the types of expressions and variables by proper-
type inference rules. All non-arithmetic expressions keep their
original types. Rules for arithmetic expressions are listed in
Fig. 2. The type judgment Γ,Θ,Υ ` e : τ 7→ C denotes that
given the context (Γ,Θ,Υ), the type of e is inferred as τ along
with the constraint set C. The context consists of the typing
hypothesis Γ which maps variables to their declared types, Θ
that assigns arithmetic expressions with their enforced types,
and Υ = (J·K, L·M) where the former is computed by value
analysis (§II-B) and the latter is given by C language data
model (e.g. data type width schemes, including LP32, ILP32,
LP64, etc.) in use. The notation ς1 � ς2 denotes that the byte
length of ς2 is no less than that of ς1 (namely ς2 elevates ς1).
E maps expressions to their original types.

We give brief explanations for some rules. In the BINARY-
ARITH rule, the type ς is required to 1) be eligible to represent
possible values of e1♦e2, 2) be the common type of ς1 and ς2
(namely ς1 ↑ ς2) to preserve well-typedness. In the BINARY-
LOGICAL rule, however, operands of logical operation are
enforced to have their common type in order to prevent 1)
implicit conversion in comparison and 2) overflow bug in each
operand. The ASSIGN-VAR rule elevates the declared type of
the variable to be assigned with respect to the right operand,
while the ASSIGN-NONVAR rule enforces the non-variable
L-value to have its original type. In the LIBRARY-CALL rule,
argument expression is enforced to fit its parameter type. The
operand of an address-of operation keeps its original type to
prevent memory issues after repair.

The collected constraints need further processing. First, for
each arithmetic variable x we add a constraint D(x) � Γ(x)
denoting that the new type of x elevates its original type
(where D maps variables to their original declared types).
Second, constraints of value inclusion such as n ∈ LςM and
JeK ⊆ Lς ′M are allowed to be violated with penalty wv since
built-in integer types can only represent a limited range of inte-
gers. Third, for each type elevation constraint ς1 � ς2, we add
a matching equality constraint ς1 = ς2 with violation penalty
wp to minimize changes on types. Generally, wv should be
substantially larger than wp to not overshadow necessary type
elevations. The conjunction of processed constraints is a partial
weighted MaxSMT problem [24]. A MaxSMT solver such as
Z3 [25] finds a solution that satisfies all hard constraints (i.e.
ones with no penalties) while minimizing the total penalty
of violated constraints (albeit a local minima is derived in
general), or reports unsatisfiable otherwise. There always
exists a solution I such that I(Γ) = D, I(Θ)(e) = E(e)
and I(ςe) = E(e) where ςe is the type variable for e.

B. Static Value Analysis
Static value analysis approximates values of expressions and

gives J·K for proper-type inference. Three analyses are mainly
used: interval analysis (which captures lower and upper bounds
of expressions), pointer analysis (which analyzes points-to
relations) and reaching definition analysis (which builds use-
def chains). Analyses share the derived information to achieve
better precision. For example, points-to relations are exploited
to approximate pointer dereferences more precisely. In interval
analysis, we extend the basic interval arithmetic [26] by 1)
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VAR

Γ,Θ,Υ ` x : ς 7→ {Γ(x) � ς}

CONST

Γ,Θ,Υ ` n : ς 7→ {n ∈ LςM, E(n) � ς}

BINARY-ARITH
Γ,Θ,Υ ` e1 : ς1 7→ C1 Γ,Θ,Υ ` e2 : ς2 7→ C2 ♦ is an arithmetic operator

Γ,Θ,Υ ` e1♦e2 : ς 7→ C1 ∪ C2 ∪ {Je1♦e2K ⊆ LςM, ς1 ↑ ς2 = ς}

BINARY-LOGICAL
Γ,Θ,Υ ` e1 : ς1 7→ C1 Γ,Θ,Υ ` e2 : ς2 7→ C2 ♦ is a logical operator

Γ,Θ,Υ ` e1♦e2 : ς 7→ C1 ∪ C2 ∪ {ς = E(e1♦e2), ς
′

= ς1 ↑ ς2, Je1K 6⊆ Lς′M⇐⇒ Θ(e1) = ς
′
, Je2K 6⊆ Lς′M⇐⇒ Θ(e2) = ς

′}

ASSIGN-VAR
x := e Γ,Θ,Υ ` e : ς 7→ C

Γ,Θ,Υ ` x : ς
′ 7→ C ∪ {Γ(x) = ς

′
, JeK ⊆ Lς′M}

ASSIGN-NONVAR
e1 := e2 Γ,Θ,Υ ` e2 : ς 7→ C e1 is not a variable

Γ,Θ,Υ ` e1 : ς
′ 7→ C ∪ {ς′ = E(e1), Je2K 6⊆ Lς′M⇐⇒ Θ(e2) = ς

′}

DEREF
Γ,Θ,Υ ` e : ς1∗ 7→ C

Γ,Θ,Υ ` ∗e : ς2 7→ C ∪ {ς1 � ς2}

ADDRESS-OF
Γ,Θ,Υ ` e : ς 7→ C

Γ,Θ,Υ ` &e : ς∗ 7→ C ∪ {ς = E(e)}

LIBRARY-CALL
Γ,Θ,Υ ` f : τ(ς) 7→ C0 Γ,Θ,Υ ` e : ς

′ 7→ C1

Γ,Θ,Υ ` f(e) : τ 7→ C0 ∪ C1 ∪ {JeK 6⊆ LςM⇐⇒ Θ(e) = ς}

Fig. 2. Rules of proper-type inference.

TABLE I
THE DISTRIBUTION OF FIX PATTERNS FOR CVE BUGS.

Pattern SC ETC DTC ET OTHER id
Count 486 42 75 56 28 668

implementing semantics of library calls relevant to numerical
operations such as abs, and 2) refining intervals with respect
to path conditions and the use-def chain. Pointer analysis is
based on Andersen’s algorithm [27] and reaching definition
analysis is based on classical data-flow analysis [28].

C. Repair Generation

A case study is conducted on 668 selected CVE identifiers
as they contain sufficient information on buggy code, security
impacts and upstream fixes. They come from 210 different
applications ranging from 2001 to 2017. We identify recurring
similar patches (i.e. fix patterns) and summarize them in Table
I. The total occurrence of patterns is larger than the number
of identifiers because some contain multiple patterns. There
are totally four common patterns. Sanity check (SC, 72.8%)
guards a critical operation against erroneous values. Explicit
type casting (ETC, 6.3%) enforces the type of an expression.
Declared type changing (DTC, 11.2%) adjusts the declared
type for a variable. Expression transformation (ET, 8.4%)
rewrites an expression as an equivalent form under integer
arithmetic, such as transforming x+y < 8 to x < 8−y. Only
4.2% of fixes have no common patterns. From the perspective
of repair mechanism, SC restricts the expression to have
representable values while ETC and DTC elevate the precision
of expression and variable, respectively. ET can be reduced to
the combination of ETC and DTC since it is a workaround
to prevent overflow without adjusting the precision. Hence,
proper-types are utilized to generate SC, ETC and DTC fixes.

Let I be the derived solution of proper-type constraints and
F be the set of candidate fixes. We have 1) FDTC

ς (x) ∈ F iff
I(Γ)(x) = ς 6= D(x); 2) F SC

ς (e) ∈ F for (e, ς) ∈ I(Θ); 3)
F ETC
ς (e) ∈ F iff I(ςe) = ς 6= E(e). The notation F (e) is used

to collectively denote a SC fix or an ETC fix on e. We define
the dependency relation C over F , such that 1) F (e1)CF (e2)
iff e1 is a descendant of e2 in the AST; 2) F ETC

∗ (e)CF SC
∗ (e);

3) FDTC
∗ (x)C F ETC

∗ (x). F1 C F2 implies that the application
result of F2 depends on that of F1.

M(FETC
ς (e1♦e2)) = M(FETC

ς (e1))♦M(FETC
ς (e2))

M(FETC
ς ((ς′)e)) = (ς)e
M(FETC

ς (e)) = (ς)e

M(F SC
ς (e1♦e2)) = check♦ς (M(F SC

ς (e1),M(F SC
ς (e2)))

M(F SC
ς (e)) =

{
checkς(e) ς � Σ(e) ∧ ς 6= Σ(e)
e otherwise

Fig. 3. The expression transformation function M .

To apply the candidate fixes in F , we iteratively choose a
fix F that depends on no other fixes in F and remove it from
F . If F is a DTC fix, we change the certain declared type;
otherwise, F is applied by expression transformation function
M shown in Fig. 3 which lists the expression transformation
schemes ordered by the priority of application. Note that SC
fixes can introduce two kinds of check functions: 1) conversion
check checkς(n) that returns n iff it is representable in ς ,
2) arithmetic check check♦ς (n1, n2) that returns the result of
n1♦n2 in mathematical arithmetic iff it is representable in ς .

D. Multi-entry Analysis
The scalability of our approach is restricted by static ana-

lysis and the capability of solver on complicated constraints.
To make our approach scale to large code bases, we adopt
multi-entry analysis to divide-and-conquer the whole-program
reasoning. Firstly, the code base is decomposed into multiple
call graph components, each of which has an entry function
from which other functions in the component are reachable
by function calls. Next, we perform proper-type inference on
each component starting from its entry and then combine
their results. To guarantee the compatibility of sub-results,
we enforce variables spanning multiple scopes (e.g. global
variables) to keep their original types. Furthermore, to reduce
the precision loss brought by compositional analysis, we
perform a function-wise pre-analysis to derive 1) function call
context, 2) function and loop summary and 3) loop invariant.
They are all based on interval abstract domain.

III. IMPLEMENTATION

The architecture of IntPTI is shown in Fig. 4. Given a
C project, IntPTI firstly preprocesses it and constructs its
control-flows for analysis. Next, IntPTI approximates values
of expressions and collects proper-type constraints by running
bounded CPA algorithm with several analyses. Candidate
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IntPTI

C project preprocess

repaired 
code

control-
flow build

bounded 
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candidate 
fixes

proper-type 
inference

fix info 
serialization

fix info 
store

accepted 
fixes

fix 
application

web interface

user

fix review

local server

Fig. 4. The architecture of IntPTI.

fixes are derived by solving the proper-type constraints using
Z3 [25]. Then, IntPTI starts a web interface for users to review
candidate fixes. Finally, IntPTI transforms the code to apply
accepted fixes.
Preprocessing. First, the compilation commands in Makefile
are captured by invocation order. Next, source files are prepro-
cessed by, in the case that the compiler in use is gcc, adding
the -E flag to make the compiler stop after preprocessing and
replacing the output *.o files by the corresponding *.i files
which are self-contained source files with macros expanded
and necessary declarations included. The *.i files compiled
into an executable or a library are organized as a task.
Bounded CPA algorithm. The static analysis algorithm used
in IntPTI is extended from CPA algorithm [29] for multi-entry
analysis. When the analysis reaches the boundary of current
call graph component or maximum loop iteration or maximum
loop nesting level, we summarize the upcoming function
or loop. The algorithm runs multiple analysis components
including but not limited to the three main analyses. Each
analysis is implemented under the CPA framework [29].

Syntactic elements of the standard C language need to be
handled carefully. Bitwise shift operations are approximated
carefully for possible intentional wraparounds. For example,
a left shift of an unsigned integer is always representable
in its type as this kind of wraparound is usually served for
modulo operation. The possible targets of a function pointer
are derived by combining pointer analysis with type matching.
If no targets can be found, certain function call is treated as
a library call without implemented semantics. Type enforce-
ments are imposed on critical program sites including function
arguments, array indexes, return values and the operands of
condition expressions. Furthermore, memory regions allocated
by *alloc family are treated as arrays whose identifiers have
the [*alloc]-[line number] format.

The heuristic for call graph decomposition in multi-entry
analysis is configurable by specifying the maximum levels of
call stack, loop unrolling and loop nesting in the configuration.
Proper-type inference. Proper-type constraints are encoded
under an extended SMT-LIB 2.0 format [30] over quantifier-
free equality logic with uninterpreted functions [31]. More
specifically, we use the declare-datatype command to
define an enumeration I of integer types plus a dummy
type OVERLONG which can represent every value in Z,
declare-fun commands to define a binary function over I to
model ↑, two binary predicates P, Q over I where P models the

{"UUID":"536335ff-f0a9-4b6b-aca0-358606f1fe9e","mode":"CAST","type":
"long int","startLine":3060,"endLine":3060,"startOffset":22,"
endOffset":23,"_defect":"overflow","_ary":2,"_op1":"i","_op2":"
o","_optr":"+","_sign":1,"children":[]}

Fig. 5. An example of a serialized fix.

Fig. 6. The web interface for fix review.

containment relation over LT M and Q models �, and variables
(also 0-ary functions) over I encoding type variables such as ς ,
Γ(x) and Θ(e). JeK is encoded as the corresponding value of ς
in I where ς is the type with the shortest byte length such that
JeK ∈ LςM, or OVERLONG if such ς does not exist. LςM is encoded
as the corresponding value of ς in I. We assert additional
constraints such that every type variable is prohibited to be
OVERLONG. To add a constraint with violation penalty w, we
use the command (assert-soft [formula] :weight w)
and for others (without violation penalty), the assert com-
mand is used. Penalty values wp and wv can be configured
by users and their default values are 1 and 100, respectively,
based on pilot experiments.
Fix info serialization. The candidate fixes are serialized as
JSON data to be interchanged across a local server and web
interface. Fig. 5 shows a serialized fix. The JSON object
for a fix stores its UUID, its mode ("SPECIFIER" for DTC,
"CAST" for ETC, "CHECK_ARITH" for arithmetic check and
"CHECK_CONV" for conversion check), its specified type, the
location of target code characterized by line number and offset,
and the fixes depending on the current fix (as the value of
"children"). Keys starting with “_” are mode-specific fields
providing more details on this fix. For example, the reason for
the fix shown in Fig. 5 is as follows: there is an overflow issue
on the signed addition of i and o.
Web interface. End users review candidate fixes via the web
interface shown in Fig. 6. The file explorer ( 3©) lists source
files of the current project. When a user selects a file, the code
viewer ( 5©) displays its contents while the relevant candidate
fixes are loaded in the fix list ( 6©). Indentions are used to
visualize the dependency relations over fixes. The user can
accept or reject a fix by toggling its button. For two fixes
F1 and F2 such that F1 C F2, the interface enforces that F2

is toggled on only if F1 is toggled on. By selecting a fix,
the code viewer highlights the target code and scrolls to the
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certain line, while the detail panel ( 4©) shows the description
of the proposed fix and the reason in natural language. For now
two working modes are supported and can be selected by the
dropdown list at 1©. In the global mode, all the candidate fixes
are accepted and their statuses are locked. In the manual mode,
however, all the candidate fixes are rejected by default and
users can manually accept some of them. Finally, by clicking
the confirmation button at 2©, accepted fixes are submitted to
IntPTI for code transformation.
Code transformation. Arithmetic checks and conversion
checks are implemented as a library libTsmartIntFix. To apply
a SC fix, we insert the corresponding check function with its
declaration introduced. It is necessary to link this library to
compile the repaired code.

IV. EXPERIMENTAL EVALUATION

The effectiveness of IntPTI can be assessed in the terms of
the following aspects:
1) What is the accuracy of IntPTI in repairing integer errors?
2) What is the runtime efficiency of IntPTI?

IntPTI is evaluated on 7 open-source projects: gzip 1.2.4,
Vim 7.4, grep 2.10, PostgreSQL 9.0.15, JasPer 1.900.5,
libarchive 3.1.2 and OpenSSL 1.0.1r. They are chosen for
evaluation because 1) they are written in C and contain known
integer vulnerabilities in the CVE database, 2) they covers
various application domains including encoding and decoding,
text processing, database system, graphics and cryptography.
Repair accuracy should be measured by recall and precision.
The former is evaluated by checking how many vulnerability
are successfully repaired after running IntPTI in the global
mode. The latter cannot be evaluated directly because we
have no complete knowledge on integer errors in realistic code
bases. Thus, we compare the numbers of critical program sites
(which are typical locations for fixes) applied with fixes by
various tools.

All experiments are conducted on a workstation under 64-
bit Ubuntu 16.04, using Intel Core i7-6820HQ@2.70GHz CPU
and 32GB memory. The maximum levels of the call stack and
loop nesting are set to 3 while loops are not unrolled (thus
loop bodies are always reasoned by loop invariants). Constraint
penalties are set as default values. The data model employed
is configured as ILP32 only if the target defects can only be
triggered under ILP32, or LP64 otherwise. The experimental
results of IntPTI are shown in Table II.

Columns 1-4 show general information about the evaluation
programs. For PostgreSQL and OpenSSL, IntPTI directly
analyzes all source files under the specified location (such
as crypto/bn) because the target defects are not included in
any preprocessed task. KLOC and KLOC-P refer to the lines
of code before or after preprocessing, respectively. KLOC
excludes all header files.

Columns 5-11 assess the recall. Column CVE-ID lists CVE
identifiers for the defects. Some identifiers (such as CVE-
2014-2669) contain multiple buggy code fragments with si-
milar defect patterns. Column DM reports under which data
model (32 for ILP32 and 64 for LP64) certain defect can be
triggered. Column Op lists buggy operations (e.g. ×u denotes
unsigned multiplication while “u2s” denotes the conversion

from unsigned to signed). The following three columns count
the different kinds of fixes. Column F reports whether certain
defect is correctly repaired. The results show that 23 out of
25 defects are repaired correctly. Two missed bugs are due
to flow-insensitivity of proper-type inference. For example,
the bug belonging to CVE-2017-5499 involves an signed
multiplication yielding an overflowed 64-bit integer which is
then passed to a critical site, and the proper-type inference
cannot capture the sequence of the overflowed multiplication
and the critical site.

Columns 12-17 report runtime efficiency results. Columns
CF, SU, VA, TI and FA report the time costs of control-
flow build, summary computation, static value analysis, type
inference and fix application, respectively. Static value analysis
costs the majority of total time (78.6% on average). It is
remarkable that type inference costs only 4.8% of total time
and this result can be achieved because multi-entry analy-
sis decomposes the complicated whole-program proper-type
constraints into fragments which can be solved efficiently.
Furthermore, IntPTI spends no more than 11 minutes on Vim,
the largest project (over 244 KLOC) used in the evaluation.

The last 3 columns evaluate the precision. The Baseline
column lists the total number of critical sites of integer
type. We compare IntPTI’s precision with CIntFix [23] and
Coker’s [22] because 1) they work on source code only
without requiring additional inputs, 2) they support various
kinds of integer errors. CIntFix changes every critical site (as
the Column Baseline shows) because it needs to make sure
whether a multi-precision integer value fits the target built-
in type on every critical site. Since we are unable to obtain
the artifact of Coker’s work after our request to authors, we
count the number of critical sites applied with fixes as if the
add-integer-cast transformation is applied to all local variables,
array subscripts and field access expressions, and the replace-
arithmetic-operator transformation is applied to all arithmetic
expressions and assignments, as the experimental settings in
the paper. The results show that Coker’s and ours make
changes on 34.8% and 2.3% of all critical sites, respectively.
In fact, by considering user’s feedbacks, our false-positive
rate can be further reduced. Coker’s and CIntFix focus on
transforming the internal integer model to a safer model, thus
massive false-positives could be generated.

CIntFix is also evaluated on the chosen projects. The results
show that CIntFix succeeds in repairing all 25 target defects
while the total time cost is 392.268s. It is insufficient to
conclude that CIntFix has better real-world applicability for
its superior performance on the recall and runtime efficiency
because precision is crucial to user experience as the criteria
for static code analyzers. In fact, the recall and runtime
efficiency of our tool could be improved by changing all
integer types to 64-bit unsigned/signed integers and inserting
sanity checks on every arithmetic operations, which would
make it much more difficult for users to review the fixes and
find possible integer defects in programs.

V. CONCLUSION

In this paper, we present IntPTI, an automatic repair tool
for integer errors in C programs. It integrates type inference
synergically with static value analysis to compose constraints
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TABLE II
EVALUATION RESULTS OF INTPTI.

General info Accuracy Performance (s) # Critical sites
Project Task KLOC KLOC-P CVE-ID DM Op ETC SC DTC F CF SU VA TI FA Σ Baseline Coker’s IntPTI
gzip gzip 5.22 17.09 2010-0001 64 −u 2 0 1 3 1.459 3.352 33.224 0.522 0.471 39.028 1166 342 29

Vim vim 244.037 1195.814
2017-6350 32/64 ×u 0 1 0 3 28.325 68.612 521.505 27.416 10.102 655.960 56367 19225 11502017-6349 32/64 ×u 0 1 0 3
2017-5953 32 ×u 2 0 0 3 29.362 71.050 467.811 29.723 9.920 607.866 19202 1236

grep grep 40.577 132.482 2012-5667 32/64 +s 3 1 1 3 4.276 7.250 14.384 1.329 1.165 28.404 4271 2004 782012-5667 32/64 u2s 0 0 1 3

PostgreSQL contrib/hstore 2.94 43.222

2014-2669 32 ×u 2 1 0 3

3.325 1.279 7.154 2.110 1.173 15.041 1979 909 1142014-2669 32 ×u 2 1 0 3
2014-2669 32 ×u 2 1 0 3
2014-2669 32 ×u 2 1 0 3

JasPer
jasper 26.932 138.348

2017-5499 32/64 ×s 0 0 0 7

5.716 13.658 57.792 7.435 2.204 86.805 11514 4037 351
2017-5500 32/64 �s 0 1 0 3
2017-5502 32/64 �s 0 3 0 3
2016-9387 32/64 ×s 2 1 0 3
2016-9262 32/64 +s 0 0 1 3

imgcmp 26.973 138.4 2017-5501 32/64 +s 3 1 0 3 5.489 10.626 12.582 7.088 2.193 37.978 11601 4045 355

libarchive bsdtar 77.424 398.783

2016-6250 32/64 +s 3 0 3 3

9.817 24.167 489.197 16.740 5.385 545.306 24184 8949 6452016-5844 32/64 ×s 0 2 0 3
2016-5844 32/64 ×s 0 2 0 3
2016-4300 32/64 +u 0 0 0 7

OpenSSL

crypto/mdc2 0.305 4.456 2016-6303 32/64 +u 0 1 0 3 0.761 0.279 0.207 0.066 0.352 1.665 59 19 2

crypto/evp 11.305 258.01 2016-2106 32/64 +s 2 0 0 3 7.057 3.053 2.465 5.433 3.593 21.601 3750 1230 682016-2105 32/64 +s 2 0 0 3

crypto/bn 13.777 78.673 2016-0797 32/64 ×s 0 0 1 3 3.968 2.170 22.935 2.585 1.579 33.237 4745 1311 532016-0797 32/64 ×s 0 0 1 3

on the types of variables and expressions for preventing
representation issues. It utilizes the solution of constraints
with common fix patterns ETC, SC and DTC codified from
the successful human-written patches. We have designed a
web interface which fills the gap between end users and
the tool to (1) help users better understand integer bugs and
2) reduce unnecessary fixes with user feedback. IntPTI is
evaluated on 7 real-world projects and the results show that
it is effective to repair various kinds of integer errors with
high runtime efficiency while avoiding unnecessary changes
on critical program sites. The source code and experimental
data are publicly available at https://git.io/v99Jw.
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