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Abstract—Boundary value analysis is a typical conventional
testing technique. However, manually identifying input regions
and writing test cases are labor-intensive and time-consuming. In
this paper, we propose a search-based random testing approach,
which automatically generates test data along the boundaries
of semantic regions of the input domain. The experiments on
mutated programs confirm the effectiveness and efficiency of
the proposed approach. Furthermore, our approach significantly
outperforms the conventional ART (Adaptive Random Testing)
methods, which sample test cases evenly across the input regions.
Our approach also outperforms EvoSuite, a state-of-the-art tool
that generates test cases satisfying certain coverage criterion.
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I. INTRODUCTION

Software testing is a primary approach to ensure the quality
of software systems. However, the current testing practice is
still largely labor-intensive and time-consuming. Huge amount
of manual efforts are required to design and execute test cases
in order to reveal code defects[1]. Over the years, various
automatic test data generation techniques have been proposed
to facilitate software testing. For example, the Random Testing
(RT) technique [2], [3], which generates purely random test
inputs, have been successfully applied to testing software such
as Java Just-In-Time (JIT) compilers [4] and Windows NT
applications[5]. Adaptive Random Testing (ART) [6], [7], [8]
aims to improve the efficiency of random testing by reducing
the size of the test suite while still triggering test failures.
Although the effectiveness of ART is questioned by some
researchers[9], there are results show that ART improves RT
in certain scenarios by detecting the first failure using 30% to
50% fewer test cases[7]. Many search-based techniques have
also been proposed to automatically generate test cases that
satisfy certain coverage criterion [10], [11], [12], [13].

Boundary value analysis [14], [15] is a typical conventional
testing technique. Technically, a program unit can be viewed
as a function. Test data can be viewed as sample points in
the input domain. The input domain is partitioned to regions
that consist of test inputs which produce the same execution
trace. It has long been recognized that by testing boundary
values of the input region, failure detection performance could
be improved[15]. However, the existing boundary value based
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testing techniques require testers to manually identify input
regions and generate test cases, which is very labor-intensive
and time-consuming, especially when there is no formal spec-
ification of the program unit.

In this paper, we show that better testing performance can
be achieved by automatically generating test cases along the
boundaries of input regions. First, we locate the boundaries
and then generates test cases close to each boundary. We
guide the test case generation process using the memetic algo-
rithm [16], [17], which is an effective evolutionary algorithm
that combines genetic and local search. The fitness function is
constructed by two distance metrics, namely branch distance
(which reflects both the structural distance in a control flow
graph and closeness of the current execution to a target branch)
and boundary distance (which is the distance from a test input
to a certain boundary).

To evaluate our approach, we have implemented a proto-
type in Java and compared it with various existing approaches,
including ART and a branch coverage based method. We
also compare our prototype against EvoSuite[13], a state of
the art search-based test case generating tool which generates
test suites towards satisfying a coverage criterion. The subject
programs include common search and sorting algorithms, nu-
merical functions, and real-world code used in a CAD system.
We adopt the mutation analysis techniques as proposed by
Offutt[18] to generate mutants of these subject programs. Each
mutant can be considered as a faulty version. We then apply
the proposed approach to generate test cases that are able to
kill these mutants (i.e., causing the mutant programs to fail).
The experimental results show that, with the same number
of test cases, on average 82.77% mutants can be killed by
our approach, while only 45.48% - 60.85% mutants can be
killed by the conventional ART techniques. Compared with
EvoSuite, our approach generates test suites of comparable
branch coverage but capable of killing more mutants.

The major contributions of this paper include:

1) We propose to automatically sample test cases near
the boundaries of regions in order to achieve a higher
failure detection rate.

2) We design and implement an evolutionary algorithm
that generates inputs near the boundary. Experimental
results show that its failure detection outperforms that
of the related methods.

The rest of the paper is organized as follows: we introduce



a motivating example in Section II and preliminaries in Sec-
tion III. Section IV gives an overview of the proposed test data
generation method. Section V describes the memetic algorithm
and the fitness function in detail. Experimental results and
analysis are presented in Section VI. Section VII summarizes
the related work and Section VIII concludes the paper.

II. A MOTIVATING EXAMPLE

Consider the code snippet in Figure 1. The function foo
contains two nested if statements (with the condition x > y
and x + y >= 10 respectively). The return value depends
on the branches that are taken in execution. Such a branching
structure is very common in programming.

1 public int foo(int x, int y) {
2 if (x > y) {
3 if (x + y >= 10) {
4 return 1;
5 } else {
6 return 0;
7 }
8 } else {
9 return x;

10 }
11 }

Fig. 1. Example (correct version)
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Fig. 2. Regions of the example

We assume that both x and y are integers range from 0
to 100, i.e., the input domain is D = {(x, y) ∈ Z2 | 0 ≤
x, y ≤ 100}. The function foo partitions D into 3 regions
R = {r1, r2, r3}, as show in Figure 2a, i.e.:

r1 = {(x, y) | x, y ≥ 0 ∧ x > y ∧ x+ y < 10}
r2 = {(x, y) | x > y ∧ x+ y ≥ 10 ∧ y ≥ 0 ∧ x ≤ 100}
r3 = {(x, y) | 0 ≤ x ∧ x ≤ y ∧ y ≤ 100}

Inputs within the same region follows the same control flow.
The regions are defined implicitly by the conditions and
operations along the control flow path. Now, suppose that the
program is modified during maintenance and the condition x
+ y >= 10 is modified to x >= 10 by mistake. The par-
tition of regions is thus changed accordingly as in Figure 2b.
We investigate how random testing helps us discover this fault.

A test suite is a set of test cases (input + expected output).
The generated test cases scatter across the input domain,
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Fig. 3. Distribution of the generated test inputs (the first row is for the correct
program while the second row is for the faulty program.)

following certain distributions that depend upon the generation
strategy. Figure 3 shows the distribution of test cases under
various strategies for the regions in Figure 2. Each test suite
contains exactly 10 test cases. If the ART strategy is used,
the test cases are sampled evenly in the input domain with
respect to certain distance metric. Figure 3a shows an example
of using the ART strategy with Euclidean distance metric. It
is discussed in [7] that evenly distributed test cases are helpful
in revealing failures. If test cases are generated with respect
to some coverage criterion, for instance the branch coverage
criterion, they may distribute as what is shown in Figure 3b,
where test cases spread over all regions. The main idea of
this paper is that inputs closer to the boundaries are more
likely to reveal failures. Traditionally, boundary value analysis
requires testers to manually identify input regions and generate
test cases. Our strategy is to automatically generate test cases
along the boundaries. Figure 3c shows the test cases generated
following our strategy.

A test case is said to reveal a failure if the program
under test produces an unexpected output when fed the input.
The results of applying the generated test suites to the faulty
version are shown in Figure 3d, 3e and 3f. The faulty program
passes the test suites generated under the former two strategies.
However, the test suite generated by our strategy is able to
cause a failure. The intuition is that, if the program is wrong,
the partition of regions must be different at some boundary (for
instance, the failure region in Figure 2b). Test cases closer to
the boundaries are sensitive to such disturbance and are likely
to distinguish the correct and faulty versions.

In this paper, we extend this basic idea and propose a
method that can efficiently detect failures by automatically
generating test cases close to the boundaries of regions.

III. PRELIMINARIES

The Control Flow Graph (CFG) of a function f is a directed
graph Gf = (N,E) where N is a finite set of nodes and
E is a finite set of edges. Each node na corresponds to a



statement a in f . If a statement a′ is executed immediately
after a, an edge (na, na′) is added. Every CFG contains two
special empty nodes nin and nout (called the entry and exit
respectively). For the first statement a1 in f , we add an edge
(nin, na1). An edge (na′ , nout) is added for each node na′ that
is associated with a statement after which the control flow
leaves the function. Specially, the control flow of an empty
function is N = {nin, nout} and E = {(nin, nout)}. A path
in the CFG is a sequence of nodes “ni1 , ni2 , . . . , nik” such
that (nij , nij+1

) ∈ E for all 1 ≤ j < k.

There are two kinds of nodes in the CFG, the decision
nodes and the action nodes. Each decision node corresponds
to a branch statement (such as if) or the decision point of a
loop statement (such as while). It has an associated condition
(denoted by condn) and two successors. Two edges originated
from the same decision node are labeled true or false
and are called the true-branch or false-branch respectively. The
branch condition of e = (n, n′) is denoted by:

cond(n,n′) =

{
condn if (n, n′) is the true-branch
¬condn if (n, n′) is the false-branch

Two branches from the same decision node have comple-
mentary branch conditions. Action nodes are basic statements
that contain assignments or function invocations. Since each
of them has exactly one successor, consecutive action nodes
are usually grouped into a basic block. Each basic block is a
maximal sequence of statements 〈ni1 , ni2 , . . . , nik〉 such that
nij is the only predecessor of nij+1

and nij+1
is the only

successor of nij . For simplicity, basic blocks are represented
by a single action node in the CFG.

Throughout the paper, the program unit under test is denot-
ed by p . Its formal parameters are denoted by (x1, x2, . . . , xn).
An input (or a test case) c is a map from the formal parameters
to concrete values. An execution trace is a path from nin to
nout (we assume the execution always terminates). Use πp(c)
to denote the execution trace of p under the input c. The
subscript ·p is omitted if no ambiguity is caused.

There are several coverage criteria used in practical testing,
e.g., the statement coverage and branch coverage. The former
one requires that each statement is executed at least once by
a test suite while the latter one requires each branch be taken.
A test target of branch coverage is a branch in the CFG. We
use B = {b1, b2, . . . , bn} to denote all test targets. A target
b = (n, n′) is said to be covered by c if (n, n′) v π(c), i.e.,
(n, n′) is a subsequence of π(c).

1 public int factorial(int x) {
2 if (x >= 0) {
3 int r = 1;
4 for (int i = 1; i <= x; i++)
5 r = r * i;
6 return r;
7 } else {
8 return 0; // error
9 }

10 }

Fig. 4. Factorial function

Definition 1 (Region): A region is a set of inputs whose
execution traces share the same set of CFG nodes. Two

inputs c1 and c2 are in the same region r if and only if
n ∈ π(c1) ⇐⇒ n ∈ π(c2) holds for all n ∈ N .

Boundaries are the areas where two or more regions join. The
partition of regions depends not only on the syntax but also
on the semantics. For the motivating example, its regions are
given in Figure 2. Inputs who share the same execution trace
are in the same region. Moreover, take the example shown in
Figure 4, which computes the factorial of x. The execution
traces of x = 6 and x = 7 are in the same region because they
cover the same set of statements (lines 2, 3, 4, 5, 6) although
they differ in the number of iterations. But x = 0 and x = 6
are in different regions because the inside of the loop (line 5)
is not reached by x = 0.

IV. OVERVIEW OF OUR APPROACH

In our approach, test cases are automatically generated in
each region, near the boundary but not exactly on it. For this
purpose, we need to deal with two subproblems: (1) Locate the
boundaries and (2) Generate test cases close to each boundary.

A. Locate Boundaries

Input domain is partitioned based on the program structure
and decision conditions. Points in two adjacent regions are test
cases that satisfy or falsify the branch condition corresponding
to the boundary. The distance from a test case to the boundary
is quantified by the degree of satisfiability of branch condition.
For instance, p2(80, 50) is farther from b1 than p1(60, 50).
Such can be verified by checking the degree of satisfiability
of x > y. The degree is quantified as 10 (60 − 50) for p1
while it is quantified as 30 (80 − 50) for p2. We prefer test
cases that are closer to the boundary, i.e., p1.
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Fig. 5. Regions and boundaries of the motivating example

B. Test Case Generation

To generate test cases (on both sides) along the boundary,
inputs that cover both branches of the decision node are
generated. This part is similar to existing works that aim at
achieving high branch coverage [10], [11], [12], [19]. However,
branch coverage is not enough for efficient failure detection.
We further measure how well the branching condition is
satisfied and push the candidates towards boundary.

Algorithm 1 is a very high-level description of the test
suite generation algorithm. Technically, it (1) generates inputs
that cover a certain branch target, (2) optimizes the boundary
distance to push them towards the boundary, (3) selects a



Input: B ← the set of all branch targets
Output: a test suite S
foreach b ∈ B do

P ←initPopulation(b);
for i← 1 to MaxIteration do

P ←search(b, P );
ts(b)← top (ts(b), P );

end
end
S ←reduce(∪b∈Bts(b));
return S;

Algorithm 1: Test suite generation

fixed number of inputs as the test suite. (1) and (2) are
optimization problems with complex objectives, thus can be
solved by an evolutionary search algorithm. We use a memetic
algorithm which combines genetic search and local search.
“search” represents an iteration of the memetic algorithm.
It tries to improve the fitness of the current population. The
fitness function measures whether a test case covers a certain
branch target and how close it is to the boundary. The “top”
function selects the best test cases from the current test suite
and the population. The “reduce” function reduces the size
of population by selecting a fixed number of inputs. There
are various selection strategies[20] and we use a simple one
that selects test cases that lie in cold regions (i.e., regions that
contain fewer test cases).

V. THE SEARCH ALGORITHM

The core of out approach (i.e., the “search” function) is
explained in this section. The essences of the algorithm are
(1) the fitness function that is designed to guide the search
towards the boundary, (2) a set of memetics to manipulate the
input candidates.

The algorithm is explained with the example shown in
Figure 6, which is a function that accepts the length of three
sides of a triangle and returns its type (either Invalid,
Acute, Obtuse or Right). The input domain, as well as
all regions, are subsets of Z3. Note that the boundaries are not
planes because of the non-linear expression at line 18.

In general, randomly covering all branch targets is not easy.
In this example, the branch at line 25 is only covered by
a triple (x, y, z) that forms a valid right triangle. Uniformly
generated random (x, y, z) (each from 16-bit unsigned inte-
gers [0, 65535]) have the probability 2.49 × 10−9 to satisfy
x2 + y2 = z2, which is extremely low.

Evolutionary search algorithm is often used to generate
test cases with high branch coverage. The search algorithm
is guided by a fitness function which measures how good a
certain input is. For instance, assume that we want to cover
the branch at line 25 and three inputs are randomly generated:
c1 = (0, 1, 1), c2 = (6, 8, 193) and c3 = (6, 8, 11). A proper
fitness function would produce the following rank c3 > c2 >
c1. c1 is considered to be the worst since it fails at the very
beginning. Between c2 and c3, the latter one is better because
they both fail at the condition x2 + y2 = z2 but c3 is closer.

The major difference between our algorithm and previous
work is that, the search algorithm does not stop when it finds a

1 public byte classify(int x, int y, int z) {
2 if (x <= 0 || y <= 0 || z <= 0) {
3 return INVALID_TRIANGLE;
4 } else {
5 if (x > y) {
6 int t = x; x = y; y = t;
7 }
8 if (y > z) {
9 int t = y; y = z; z = t;

10 }
11 if (x > z) {
12 int t = z; z = x; x = t;
13 }
14 // now, x <= y <= z
15 if (x + y <= z) {
16 return INVALID_TRIANGLE;
17 } else {
18 long delta = (x*x + y*y - z*z);
19 if (delta > 0) {
20 return ACUTE_TRIANGLE;
21 } else if (delta < 0) {
22 return OBTUSE_TRIANGLE;
23 } else {
24 // delta == 0
25 return RIGHT_TRIANGLE;
26 }
27 }
28 }
29 }

Fig. 6. A triangle classifier

test case that covers a certain branch, it further pushes the test
case towards a boundary so that it may reveal more defects.
This is also guided by a fitness function which measures the
distance from a test case to a certain boundary. For example,
assume that we want to push towards the boundary introduced
by line 15 and three inputs are found to cover the branch:
c4 = (1, 4, 10), c5 = (1, 4, 7) and c6 = (1, 4, 6). Although they
all take the true-branch on line 15, c6 is closest to the boundary
because it falsifies x + y <= z at a minimal degree.

A. Memetic Algorithm

Let B = {b1, . . . , b|B|} be the set of branch targets. As
shown in Algorithm 2, we iteratively search for test cases that
are near the boundary introduced by a branch target b.

The outlined algorithm is a typical memetic algorithm
framework[21]. It is called by Algorithm 1 iteratively. Genetic
and local search are performed at each iteration to produce new
candidates. Selection is applied at the end of each iteration. It
terminates when good enough candidates are produced or the
maximal number of iterations is reached.

B. The Fitness Function

The fitness function significantly affects performance of the
search algorithm. For our particular problem, given a target b
and a candidate c, the fitness of c is evaluated based on the
trace π(c). The fitness value measures how close it is to the
boundary. It is defined by two metrics:

• Branch distance: It consists of two parts: (1) the
minimal number of control dependent nodes from



Input: b← a branch target, C ← init population.
Output: optimized population C
C1 ← ∅, C2 ← ∅ ;
// Genetic phase
for i = 1 to CrossoverSize do

pick x, y ∈ C;
z ←crossover (x, y);
mutate(z);
C1 ← C1 ∪ {z};

end
// Local search phase
for i = 1 to LocalSearchSize do

pick x ∈ C;
z ←localSearch(x);
C2 ← C2 ∪ {z};

end
// Selection
C ←select(C ∪ C1 ∪ C2);
iteration← iteration+ 1;
return C;

Algorithm 2: The search function - an iteration of the
memetic algorithm

every node in the trace to the decision node. (2) the
distance for the expected branch to be taken at the
decision node. Branch distance is first minimized so
that the execution trace covers the specific branch.

• Boundary distance: It measures how far is it from the
boundary. It is applied after the branch is covered.

Technically, given G = (N,E), a node n′ is reachable
from another one n, denoted by n  n′, iff there is a path
from n to n′. All reachable nodes of n are Reach(n) = {n′ ∈
N | n n′}. In a CFG, all successors of a node are denoted
by Post(n) = {n′ ∈ N | ∃(n, n′) ∈ E} and all predecessors
are Pred(n) = {n′ ∈ N | ∃(n′, n) ∈ E}. Notice that the
concept of reachability is defined regardless of conditions on
the edges. Obviously, Post(n) ⊆ Reach(n) holds for all nodes
in N . Without loss of generality, we assume that all nodes are
reachable from nin and nout is reachable from all nodes.

Let fitb(·) be the fitness function. Let b be a branch target
(ts, td) ∈ E, c be an input. Let πp(c) = ni1 , ni2 , . . . , nik be
the execution trace produced by c. Assume that the valuation
at the node nij is vj (initially, v1 = c), then fitb(c) is:

• If b is not covered (ts may be in π(c)), the fitness is:

fitb(c) = max
1≤j<k

{−disti(ts)(nij )+distβ(vj , nij ⇀ nij+1
)}

• Otherwise there exists a j such that nij = ts and
nij+1

= td (i.e., b is covered), then

fitb(c) = distδ(vij , ts ⇀ td)

1) Branch Distance: Branch distance consists of two parts.
The first part disti(n′)(n) is the number of isolation nodes
from n to n′. The second part distβ(v, n1 ⇀ n2) is the
satisfiability degree of the branch condition for the edge
(n1, n2). The branch distance mentioned in this paper extends
similar ideas of the approach level in [22] and the branch
evaluation expression in [23].

First part: Given a graph G = (N,E) and a pair of nodes
n, n′ ∈ N . n is an isolation node for n′ if and only if: (1)
n 6= n′ ∧ n′ ∈ Reach(n). (2) ∃v ∈ Post(n). (n′ /∈ Reach(v)).
Intuitively, n is an isolation node for n′ if and only if n′ is
reachable from n but n′ will no longer be reachable if an
unwanted decision is made at n. Isolation(n′) denotes the set
of isolation nodes for n′. disti(n′)(n) denotes the minimal
number of isolation nodes over all paths from n to n′. It is
+∞ if n′ /∈ Reach(n). Notice that disti(n′)(n) is asymmetric.

Given a CFG G = (N,E) and n ∈ N . We call disti(n)(·)
the isolation distance and CFG labeled with disti(n)(·) the
isolation graph. They can be constructed efficiently using an
algorithm which is similar to the construction of dominant
graph. Tdime complexity is O(|E| · log(|N |)).
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Fig. 7. Isolation graph of the example

Take the TriangleClassifier example, the isolation
graph for the node n16 (return RIGHT_TRIANGLE;) is
shown in Figure 7. The isolation nodes for n16 are colored
in gray (Isolation(n16) = {n1, n9, n12, n13}) and the isolation
distance to n16 is labeled on each node. From n1, at least
4 desired decisions should be made (at n1, n9, n12, n13), to
n16, i.e., disti(n16)(n1) = 4. But only 2 desired decisions are
required from n12 to n16, thus disti(n16)(n12) = 2. Notice that
the decision nodes n3, n5, n7 are not isolation nodes because
they all potentially lead to n16 no matter which branch is taken.

Second part: When the decision node of a branch is
reached but the execution goes along the other branch, the
distance for taking a desired branch is measured. It is defined
based on the satisfying distance of condition expressions. Each



TABLE I. φ: SATISFYING DISTANCE FOR ATOMIC FORMULAS

f Type φ(v, f)

l > r disc. µ(v(l)− v(r)− 1)
l ≥ r disc. µ(v(l)− v(r))
l < r disc. µ(v(r)− v(l)− 1)
l ≤ r disc. µ(v(r)− v(l))
l ≥ r cont. µ(v(l)− v(r))
l > r cont. µ(v(l)− v(r)− ε)
l ≤ r cont. µ(v(r)− v(l))
l < r cont. µ(v(r)− v(l)− ε)
l = r any −µ(|v(r)− v(l)|)
Other Bool. expr. e Bool. v(e)?1 : −1

decision node is associated with a condition expression, which
is a Boolean combination of atomic formulas. Each atomic
formula is either a Boolean variable, a predicate (“=, <,≤”,
etc.) or a function invocation which returns a Boolean value.
For instance, “f := ¬(b ∨ (x1 = x2) ∧ contains(s, x))”. A
valuation v is a map from variables to concrete values. The
value of f under v is denoted by v(f). We write v � f if v(f)
is true, otherwise we write v 2 f .

Definition 2 (Satisfying distance): Given a formula f and
a valuation v. The satisfying distance of v is:

sd(v, f) =


min{sd(v, fi)} if f := f1 ∧ f2 ∧ . . . ∧ fn
max{sd(v, fi)} if f := f1 ∨ f2 ∨ . . . ∧ fn
−sd(v, f ′) if f := ¬f ′
φ(v, f) if f is atomic

The satisfying distance measures how well f is satisfied by
v. It is defined recursively and based on the φ function which
evaluates the satisfying distance for atomic formulas. Let µ :
R 7→ [−1, 1] be any monotonically increasing function that
maps real numbers to a bounded interval and µ(0) = 0.

Table I gives the definition of φ that is used in this
paper. φ is computed depending on the structural pattern
and data types in the expression. In the table, “discr.” are
discrete data types such as int, byte, char and “cont.”
are continuous data types such as float and double. ε
is a small positive value which is chosen according to the
precision of the corresponding data type. In this paper, we use
µ(x) = 2 · arctan(x)/π.

From the definition, it holds that v � f iff sd(v, f) ≥ 0,
v 2 f iff sd(v, f) < 0. Then distβ(v, n ⇀ n′) is defined as:

distβ(v, n ⇀ n′) := sd(v,¬cond(n,n′))

Given a branch b, the search algorithm is guided by branch
distance to obtain an input c that covers b.

2) Boundary Distance: If the target b = (n, n′) is covered
by an input c, then c must be already in the region that
corresponds to b. For efficient failure detection, we want c
to be near the boundary. The satisfying distance is used to
measure how far is it from c to the boundary introduced by b.

First of all, since b = (n, n′) is already covered by c, we
know that (n, n′) is in the trace. Assume that v is the valuation
at the node n, then it must hold that v |= cond(n,n′). Therefore
0 ≤ sd(v, cond(n,n′)) ≤ 1. The boundary distance distδ(·, ·) is:

distδ(v, b) = 1− sd′(v, b)

where sd′ is a modified satisfying distance. The intuition is
that we want values near the boundary but not exactly on it.

If we use the satisfying distancesd directly, then the values
on the boundary will have better fitness, which is not desired.
The definition of sd′ differs from that of sd in the way that the
computation for atomic formulas (φ) is replaced with a new
version φ′ which has a barrier that prevents a value from being
exactly on the boundary. For inequalities such as l ≤ r, the
computation of µ(v(r)−v(l)) is modified to µ(barrier(v(r)−
v(l))). The barrier(x) function ensures that test cases at a
certain close distance are preferred. The fitness reduces when
it is too close or too far.

3) Example: Take the example in Figure 6, assume the
current branch target b is the branch from line 19 to 20. Then
the candidates in Table II are ranked: c1 < c2 < c3 < c4 < c5.

TABLE II. EXAMPLES OF FITNESS EVALUATION

Input Fitness Note
c1 = {0, 4, 4} < −3 fails early at line 2
c2 = {1, 2, 10} < −2 fails early at line 15
c3 = {3, 4, 6} < −1 fails at line 19
c4 = {3, 3, 3} [−1, 0] −µ(barrier(32 + 32 − 42))
c5 = {3, 4, 3} [−1, 0] −µ(barrier(32 + 32 − 32))

C. Memetics

Memetics are a group of heuristics that are used to modify
a test case[21]. We implemented the following memetics:

• random(): generates a random value in the domain.

• randist(): generates a random value following
certain distribution (e.g. p(x) = 1/(x+ 1)).

• extreme(): generates an extreme value in the do-
main (e.g. 255 for byte).

• special(): generates a special value in the domain
(e.g. {0, 1,−1} for int).

• neighbour(x): generates a neighbor of an existing
value x (used in genetic search).

• neighbours(x): generates all neighbors of a value
x (used in local search).

The memetics are implemented differently for elementary
types. For dependent types such as lists (List<T>) or arrays
(T[]), their memetics are implemented upon those of the un-
derlying their basic type T. Basic operations that manipulates a
list (or array) are adding, modifying and removing an element.

D. Implementation Issues

Due to the short-circuit evaluation feature of programming
language1, the evaluation of a condition expression may not
be completed. Thus we use partial satisfying distance sd∗(·, ·)
instead of the satisfying distance sd(·, ·).

sd∗(v, f) =

{
sd(v, fq) short-circuit happens
sd(v, f) otherwise

fq is the subset of f that have been evaluated. It can be proven
that |sd∗(v, f)| ≤ |sd(v, f)|. Furthermore, sd∗(v, f) ≥ 0 ⇐⇒
sd(v, f) ≥ 0 ⇐⇒ v � f and sd∗(v, f) < 0 ⇐⇒ sd(v, f) <
0 ⇐⇒ v 2 f hold. Thus the partial satisfying distance is a
weaker estimation for the satisfying distance. But the former
one is practically computable.

1http://en.wikipedia.org/wiki/Short-circuit evaluation



VI. EXPERIMENTS

A. Experiment Design

To evaluate the performance of our method in failure
detection, we developed a prototype in Java. Figure 8 depicts
the experiment procedure. Given a program unit, we (1) extract
the CFG from the source code, (2) instrument necessary code
to evaluate the fitness, (3) run the memetic algorithm to
generate a test suite. CFG is obtained by analyzing Abstract
Syntax Tree (AST) of the Java code with JDT. The program is
instrumented upon AST, which is later exported to well-formed
Java code and compiled to byte codes. Then the memetic
algorithm is used to generate test cases and a test suite is
obtained. On the other hand, the original program is mutated
to a group of mutants. Mutation is performed using µJava [18],
which mutates Java programs using the rules in Table III.
Finally, we feed the test suite to both the original program
and mutants and compare their outputs. A mutant is killed if
its output is different from that of the original program (i.e.,
the mutant program fails).

Prog.
Instrumented

Prog.

CFG Boundaries Memetic Alg.

Test SuiteMutants
failure detectionuJava

ge
ne

ra
te

AST

JDT

Fig. 8. Experiment design

TABLE III. MUTATION OPERATORS IN µJAVA

Operator Description
AOR Arithmetic Operator Replacement
AOI Arithmetic Operator Insertion
AOD Arithmetic Operator Deletion
ROR Relational Operator Replacement
COR Conditional Operator Replacement
COI Conditional Operator Insertion
COD Conditional Operator Deletion
SOR Shift Operator Replacement
LOR Logical Operator Replacement
LOI Logical Operator Insertion
LOD Logical Operator Deletion
ASR Assignment Operator Replacement

Experiments were performed on a dozen of Java programs,
some of which are commonly used routines of the Apache
Commons Project. Others include some program units extract-
ed from a real-world CAD system2 whose McCabe cyclomatic
complexity[24] is relatively large. Furthermore, since we found
that well written Java code usually consists of small units, we
add some artificial programs with complicated control flows.
Each program is measured by the number of statements and
lines of code. Details are presented in Table IV. The “#stat”
column shows the number of statements and the “C-C” column
shows the cyclomatic complexity values.

The failure detection performance of our approach is
compared with several related methods:

2http://gems8.com/

• ART1: An ART method that measures the distance of
inputs based on the Euclidean distance in the input
domain[7].

• ART2: An ART method that measures the Jaccard
distance of the set of statements in its execution
trace[25]. In this way, ART is used as a white-box
testing method. The Jaccard distance3 of two sets A
and B is defined as D(A,B) = 1− |A∩B||A∪B| .

• BCS: As branch coverage is an important coverage
criterion in structural testing, this method tries to gen-
erate a set of test cases that achieve high branch cov-
erage. We also implement this method by a memetic
algorithm without considering the boundary distance.
Although test cases are generated from regions, they
are not necessarily near the boundaries.

As reported in related work [7] and [8], ART techniques
perform better than pure random testing (RT) techniques,
therefore in this paper we do not compare our method with
RT techniques.

B. Results on Failure Detection

To evaluate the performance of our method in failure
detection, we examine the hypothesis that the proposed method
kills more mutants than ART1, ART2 and BCS. The number
of killed (or/and alive) mutants is compared.

Since ART1, ART2 and BCS are all implemented by
evolutionary algorithms, the number of iterations should be
bounded. For a fair comparison, the upper bound is the bound
for our algorithm multiples the size of the population, i.e.,
it is |population| × maxIterationmemetic. For the memetic
algorithm, the population size is set to 50. In each iteration, 5
new candidates are obtained by crossover and mutation. The
local search is restricted to be in a small neighborhood which
is reachable within 3 steps from the current value. In the
local search, at most 2 input parameters for the unit could be
modified simultaneously. The setting of parameter is obtained
empirically and fixed prior to the experiments for all cases.

TABLE V. FAILURE DETECTION RESULTS

Prog. Total Alive
Mutants ART1 ART2 BCS Ours

mot 91 86 86 29 17
triangle 253 189 165 64 55
array 94 73 13 24 7
binary 109 88 64 22 21
bubble 84 3 3 3 3
gcd 285 79 79 40 35
heap 350 54 53 50 52
arcsinh 371 251 30 48 16
pow 37 37 30 7 4
prime 67 61 40 9 9
sec 177 101 101 68 64
quad 405 224 218 135 80

TABLE VI. OVERALL EVALUATION

Total=2323 ART1 ART2 BCS Ours
Alive 1246 882 499 363

Kill 1077 1441 1824 1960
Mutant Score 45.48% 60.85% 77.03% 82.77%

3http://en.wikipedia.org/wiki/Jaccard index



TABLE IV. PROGRAMS UNDER TEST

Prog. LOC #stat C-C Note
mot 11 7 4 The motivating example.
triangle 33 22 8 Classifies triangles to Invalid, Acute, Obtuse or Right by their sides.
array 37 23 10 Checks if an array is monotonically increasing or decreasing.
binary 21 11 4 The binary search algorithm of Apache Commons.
bubble 11 10 4 The bubble sort algorithm.
gcd 55 26 10 The binary greatest common divisor algorithm of Apache Commons.
heap 67 41 13 The in-place heap sort algorithm.
arcsinh 25 16 6 Inverse hyperbolic sine function of Apache Commons.
pow 12 5 3 A tricky algorithm that check if a number is a power of 2.
prime 22 15 6 Checks if a number is a prime number.
sec 29 12 6 Solves a second-order equation, from a CAD system.
quad 47 25 12 Checks the type of quadratic shape, from a CAD system.

The results are shown in Table V and Table VI. It is obvious
that our proposed method outperforms the related methods.
Our method wins ART1 and ART2 in almost all cases and
only ties in one case (the “bubble” program). Out of all the
2323 generated mutants, the ART-based algorithm kills at most
1486 (60.85%) mutants in all cases while our method kills
2005 (82.77%) mutants. Compared with BCS, our method only
loses in one case (the “heap” program), ties in two cases (the
“bubble” and “prime” programs), and wins in all the other
cases. For numeric programs such as “quad” and “arcsinh”,
our method achieves much better results. This is because
the proposed method utilizes the satisfying distance that is
smooth for numeric programs. Thus the search algorithm is
more sensitive to the input and yields better performance. We
also perform pairwise t-test to check the statistical significance
of the comparisons. The results confirm that our method
outperforms the related methods at the significance level 0.05.

C. Compare with EvoSuite

EvoSuite4 is a tool that automatically generates test cases
for Java classes. EvoSuite applies an evolutionary algorithm
to generate and optimize whole test suites towards satisfying
a coverage criterion. It further suggests possible oracles by
adding small and effective sets of assertions. Since it was
ranked first in the Unit Test Generation competition in SBST
2013[26], we believe that EvoSuite is a qualified representative
of state-of-the-art test case generation tools.

EvoSuite and our method both employ evolutionary algo-
rithms. However, EvoSuite aims to generate test cases that
satisfy certain coverage criterion but our method further pushes
the cases towards the boundaries. By comparing these two
approaches, we may further reveal how utilizing the input
region information improves the quality of the generated test
suites.

The comparison is conducted as follows. We collect 20 pro-
gram units5 including those used in the previous experiment as
well as more common routines. We require that the experiment
subjects operates on data of elementary types, strings, arrays
or lists6, with no further constraints. We first use EvoSuite to
generate a test suite for each of the program unit. For a fair
comparison, we then use our approach to generate test suites
of the same size as EvoSuite does correspondingly.

4http://www.evosuite.org/
5http://pan.baidu.com/share/link?shareid=1150704595&uk=2167922693
6Our method could be extended to a rich set of data types such as Set,

Map, by providing corresponding memetics.

The comparison results are presented in Table VII. The
first column lists the abbreviation of subject programs’ names.
Column “#TC” counts the number of test cases in each gen-
erated test suite and the number of mutants for each program
is denoted by “#M”. Column “Coverage” reports the number
and ratio of mutants covered by test suites generated by both
tools, i.e., mutants whose mutated statement is covered by the
test cases. The last column “Killed” reports the number and
ratio of killed mutants.

According to the table, the two tools achieved comparable
mutant coverage on all program units. In 11 of 20 programs,
the test suites generated by both tools covered 100% mutants,
and in 7 more programs this coverage is above 90%. However
we noticed an interesting phenomenon as we inspect the
statistics on mutants killed. In 14 programs our tool killed
no less mutants than EvoSuite. However, in programs such
as “gcd”, “heap”, “arcsinh” and “taxcalc”, we observe a
prominent improvement in this number as 10-75 more mutants
of each programs are killed by our tool. A straightforward
illustration is presented in Figure 9 and 10. This is a strong
indication that even satisfying the same coverage goal, pushing
test data to the input region boundaries certainly improves test
suites’ ability to distinguish failing programs from the correct
ones.

An interesting observation is that our method gains better
performance when the number of mutations grows larger, i.e.,
when the program size becomes larger.
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Fig. 9. Comparison with EvoSuite

D. Threats to Validity

The proposed method is mainly designed for unit testing
thus the experiment subjects are small programs units. Also,
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TABLE VII. DETAILED COMPARISON WITH EVOSUITE

Algo. #TC #M Coverage Killing
Ours EvoSuite Ours EvoSuite

alpha 5 28 28(1.00) 28(1.00) 17(0.60) 21(0.75)
mono 5 42 42(1.00) 42(1.00) 22(0.52) 22(0.52)

binary 3 43 43(1.00) 43(1.00) 37(0.86) 34(0.79)
bubble 1 45 29(0.64) 29(0.64) 23(0.51) 19(0.42)

cold 3 32 32(1.00) 32(1.00) 23(0.72) 23(0.72)
date 5 37 37(1.00) 37(1.00) 30(0.81) 30(0.81)
max 2 20 20(1.00) 20(1.00) 7(0.35) 8(0.40)
gcd 4 155 153(0.99) 143(0.92) 108(0.70) 69(0.45)

heap 2 160 128(0.80) 129(0.80) 91(0.57) 62(0.39)
arcsinh 5 311 311(1.00) 311(1.00) 136(0.44) 61(0.20)

pow2 3 21 21(1.00) 21(1.00) 16(0.76) 17(0.81)
max3 3 6 6(1.00) 6(1.00) 1(0.17) 1(0.17)

Newton 3 47 43(0.92) 45(0.96) 30(0.64) 36(0.77)
palind. 3 20 20(1.00) 20(1.00) 14(0.70) 14(0.70)

right 6 49 49(1.00) 49(1.00) 26(0.53) 27(0.53)
prime 4 30 29(0.97) 30(1.00) 19(0.63) 22(0.73)
quad 16 197 187(0.95) 187(0.95) 153(0.78) 149(0.76)

number 20 268 253(0.94) 255(0.95) 91(0.34) 83(0.31)
taxcalc 7 121 119(0.98) 109(0.90) 109(0.90) 98(0.81)
triangle 6 76 69(0.91) 69(0.91) 37(0.49) 35(0.46)

in the current experiment, our method performs better on
numeric programs since their fitness functions are smooth. In
the future, we will apply it to a broader class of programs,
including larger and more diverse programs. More specifically,
the current target is program units but we would like to deal
with object-oriented programs using inter-procedural analysis,
like what Ciupa et al. did [27]. Furthermore, in this paper
the effectiveness of the proposed method is evaluated using
randomly generated mutants. In the future, we will evaluate it
in real-world software testing practice.

VII. RELATED WORK

Adaptive Random Testing (ART) technique [6], [7], [8]
aims to improve the efficiency of random testing by reducing
the size of the test suite while still triggering test failures.
The idea of ART is to evenly sample random inputs in
the input domain. The assumption is that two nearby inputs
have a large probability of detecting the same failure pattern.
It is pointed out that the failure-causing inputs tend to be
clustered within the input domain[7]. Thus, evenly chosen test
cases are likely to detect different possible failures. Ciupa
et al.[27] also proposed to apply the concept of ART to

object-oriented software by defining new distance measures.
As discussed in Section IV, our proposed method chooses test
cases along the regional boundary. Because our method utilizes
the control flow information extracted from source code, it
is not surprising that it can outperform the traditional ART
method (which is largely a black-box testing method).

Automatic generation of test suite with boundary value
analysis was also studied in [28] and [29]. Their methods
are based on dynamic symbolic execution (DSE). This paper
shares the same spirit in the motivation but differs in the
technical roadmap. The generality of DSE is restricted by the
power of underlying SMT solvers. For instance, many SMT
solvers can not solve path conditions that contain triangular
functions. Our approach, however, relies on concrete execution
and applies to a border range of programs. The work of
Shahbazi[30] is an improvement of RT/ART/QRT by using
the centroids of Voronoi regions to improve the effectiveness
of the test case production. Their work relies on boundaries
but does not prefer test data along boundaries.

In our work, we focus on the program units at the intra-
procedure level. In object-oriented (OO) unit testing, gen-
erating unit tests often involves the generation of method
sequences and the generation of method arguments[31]. Xie
et al. proposed Symstra, a framework that achieves both
test generation tasks using symbolic execution of method
sequences with symbolic arguments[31]. Korat[32] is a novel
framework for automated testing of Java programs. Given
a formal specification for a method, Korat uses the method
precondition to automatically generate all test cases. However,
formal specification is not commonly available and symbolic
execution is often expensive.

Wegener et al. proposed the metric of approach level in
[22], which is similar to the isolation distance in this paper.
In Korel’s paper[23], a metric similar to branch distance was
also proposed. In our work, the notion of boundary distance is
introduced to utilize the semantic structure of regions. Our idea
is that test data near the boundaries are more likely to detect
bugs. In this paper, we extend this basic idea and propose
a method that can efficiently detect failures by automatically
generating test cases near the boundaries of regions.

Our approach is essentially a Search-based Software En-
gineering (SBSE) approach [33], [34]. SBSE seeks to refor-
mulate software engineering problems as “search problems”
using a variety of techniques from the metaheuristic search,
operations research, to evolutionary computation paradigms.
SBSE has been applied to solve many different software
engineering problems such as optimizing design decisions[35].
Search-based techniques have been also used to generate a test
input to drive the execution along a chosen path or branch
[10], [22], [11], [33], [12], [19], [13]. Our work applies the
essential idea of SBSE to search for test data along the region
boundaries.

Our work can be applied to regression testing. In practice,
regression testing is performed to ensure that new changes
to the code do not introduce new faults. As it is time-
consuming to run the aggregated tests, many test selection
and prioritization techniques [20], [36] have been proposed
to reduce the number of tests used in regression testing.
Some of these techniques also apply search-based algorithms



(such as greedy algorithms[20] and genetic algorithms[37]),
to optimize test cases with respect to certain coverage criteria
(such as statement coverage and branch coverage). We apply an
evolutionary algorithm called memetic algorithm to generate
test suites for effective regression testing.

VIII. CONCLUSION

In this paper, we propose a search-based approach for auto-
matically generating test cases that are close to the boundaries
of regions. A prototype tool is implemented and experimental
results have shown that our method can generate better test
suites for failure detection. The results also show that our
approach outperforms the ART-based and coverage based
test case generation methods. Our approach can reduce the
manual work required by the existing boundary value analysis
techniques and can be put in to practice in the future.
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