
Artificial Intelligence 257 (2018) 127–157
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Parallelizing SMT solving: Lazy decomposition and conciliation

Xi Cheng a, Min Zhou a,∗, Xiaoyu Song b, Ming Gu a, Jiaguang Sun a

a School of Software, TNLIST, KLISS, Tsinghua University, Beijing, China
b Electrical and Computer Engineering, Portland State University, Portland, OR, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 July 2015
Received in revised form 11 December 2017
Accepted 15 January 2018
Available online 31 January 2018

Keywords:
Satisfiability Modulo Theories
Parallelization
Lazy decomposition
Conciliation
Theory of equality with uninterpreted
functions

Satisfiability Modulo Theories (SMT) is the satisfiability problem for first-order formulae
with respect to background theories. SMT extends the propositional satisfiability by
introducing various underlying theories. To improve the efficiency of SMT solving, many
efforts have been made on low-level algorithms but they generally cannot leverage the
capability of parallel hardware. We propose a high-level and flexible framework, namely
lazy decomposition and conciliation (LDC), to parallelize solving for quantifier-free SMT
problems. Overall, a SMT problem is firstly decomposed into subproblems, then local
reasoning inside each subproblem is conciliated with the global reasoning over the shared
symbols across subproblems in parallel. LDC can be built on any existing solver without
tuning its internal implementation, and is flexible as it is applicable to various underlying
theories. We instantiate LDC in the theory of equality with uninterpreted functions,
and implement a parallel solver PZ3 based on Z3. Experiment results on the QF_UF
benchmarks from SMT-LIB as well as random problems show the potential of LDC, as
(1) PZ3 generally outperforms Z3 in 4 out of 8 problem subcategories under various core
configurations; (2) PZ3 usually achieves super-linear speed-up over Z3 on problems with
sparse structures, which makes it possible to choose an appropriate solver from Z3 and PZ3
in advance according to the structure of input problem; (3) compared to PCVC4, a state-
of-the-art portfolio-based parallel SMT solver, PZ3 achieves speed-up on a larger portion of
problems and has better overall speed-up ratio.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Satisfiability is the fundamental problem of determining if a formula can be satisfied by an interpretation. A variety
of problems involved with complex constraints, can be described in terms of satisfiability and solved efficiently, such as
scheduling [1], design automation [2] and verification [3,4]. Many of these problems are encoded in Boolean formulae and
solved by Boolean satisfiability (SAT) solvers. Although SAT problem is proven to be NP-complete [5], modern SAT solvers
(zChaff [6], MiniSAT [7], etc.) employ sophisticated and effective heuristics to handle problems of interest efficiently. SAT
uses only propositional variables and operations, which leads to expensive encoding for problems natively modeled at
a higher level of abstraction. In the past decades, Satisfiability Modulo Theories (SMT) has drawn wide attention where
atomic formulae can be not only propositions but also predicates in background theories. Problems requiring expressiveness
of equality, uninterpreted function symbols, arithmetic, recursive data structures and quantifiers can be handled naturally
and efficiently by SMT solvers.

* Corresponding author.
E-mail address: mzhou@tsinghua.edu.cn (M. Zhou).
https://doi.org/10.1016/j.artint.2018.01.001
0004-3702/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2018.01.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:mzhou@tsinghua.edu.cn
https://doi.org/10.1016/j.artint.2018.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2018.01.001&domain=pdf

128 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
There are mainly two kinds of approaches for SMT solving [8]: the eager and the lazy approaches. The former involves
translating an SMT problem into an equi-satisfiable Boolean formula and utilizing the power of optimized SAT solvers.
Optimized heuristics focus on generating small SAT problems with relatively fair time expense. The example solvers include
UCLID [9], STP [10] and Boolector [11]. The latter approach employs a layered framework where the Boolean skeleton of a
formula and the theory related reasoning are separated and handled at different levels. In general the eager translation is
ad-hoc and slower than the lazy approach [12]. Most of the state-of-the-art SMT solvers employ lazy approaches, such as
Z3 [13], Yices [14], CVC4 [15] and MathSAT [16].

Traditional eager and lazy SMT solvers work in a sequential manner. Efficiency improvement relies on adjusting the
algorithm that handles the Boolean skeleton or theory reasoning. However, SMT problem increases its size and complexity
tremendously in real-world applications while the gains given by traditional algorithmic improvements fail to effectively
respond to this challenge. With the evolution of parallel hardware, it is crucial to parallelize SMT solving to better utilize
the capability of hardware.

In this paper, we propose the lazy decomposition and conciliation (LDC) framework for parallel SMT solving on multi-
core systems. An SMT problem is firstly decomposed into several smaller ones by distributing its clauses, and then solved by
conciliating local and global reasoning. SMT solving can benefit from LDC in two aspects. First, the large and complex prob-
lem is decomposed into smaller and simpler subproblems that can be solved in parallel. In some cases, satisfiability of the
original problem can be directly determined by satisfiability of subproblems. Second, lemmas derived from local reasoning
on each subproblem are shared, thus the termination may reach faster than solving the whole problem sequentially. Being
a high-level framework, LDC frees solver designers from adjusting low-level algorithm as it requires calling APIs provided
by mature sequential solvers only. Moreover, LDC is general and can be applied to various underlying theories. We have
instantiated LDC in the theory of equality with uninterpreted functions (TE), and implemented a parallel solver named PZ3
based on Z3 [13], one of the state-of-the-art SMT solvers. Experiment results show the competitive efficiency of PZ3 over
Z3. Particularly, PZ3 has drastic performance gains on sparse SMT problems.

Main contributions of this paper are summarized as follows:

• We propose a high-level and flexible framework LDC for parallelizing SMT solving on multicore systems, as (1) it can
be built upon an existing SMT solver in a loosely-coupled manner without modifying complicated internal algorithms;
(2) it is applicable to various practical theories. The soundness and completeness of LDC are also formally established.

• We present an instantiation of LDC in TE . The decision procedure can be proven to terminate within a finite number of
steps.

• We implement the instantiation of LDC in TE as a prototype tool named PZ3 based on Z3. The experimental results
show that PZ3 outperforms Z3 on various kinds of random or crafted problems, especially ones with sparse structures.

The rest of the paper is organized as follows. Section 2 introduces formal preliminaries. In Section 3, we illustrate our
framework by a motivating example. Section 4 presents LDC framework and Section 5 instantiates LDC in TE . In Section 6,
we prove some important properties of LDC and its instantiation in TE . Section 7 demonstrates a detailed experimental
evaluation of our parallelized solver PZ3. Finally, we survey some related work in Section 8 and conclude the paper in
Section 9.

2. Preliminaries

In this section, we introduce basic concepts and notations used in our paper.

2.1. First-order logic

The signature � of a first-order language is a tuple (�F , �P) where �F and �P are the sets of function and predicate
symbols, respectively. Each symbol in � is associated with an arity, a non-negative number. In particular, we call 0-arity
symbols in �F constant symbols, and 0-arity symbols in �P propositional symbols. A variable is a symbol denoting an
arbitrary object. A �-term is a first-order term constructed using symbols in �. A �-atom is either an expression of the
form P (t1, . . . , tn) where P ∈ �P and t1, . . . , tn are �-terms, or an expression of the form t1 = t2 where = is the logical
equality symbol and t1, t2 are �-terms. A �-literal is a �-atom or its negation. A �-formula is a Boolean combination of
�-literals. In particular, a �-clause is a disjunction of �-literals. �-sentences are �-formulae without free variables. In this
paper we are interested in quantifier-free terms and formulae. For technical convenience, we treat variables in quantifier-free
formula as constants in a suitable expansion of �.

A model (or an interpretation) M is a pair (D, (_)M) where D is a non-empty set and (_)M is a map from symbols in �
to concrete values in D. (_)M assigns each constant symbol c ∈ �F to an element cM ∈ D; each function symbol f of arity
n > 0 to a total function f M : Dn → D; each propositional symbol p to an element pM ∈ {true, false} and each predicate P
of arity n > 0 to a total function P M :Dn → {true, false}. In the rest of this paper, we use the term “interpretation” instead of
“model” because a “model” is defined over the whole � while an “interpretation” can be a valuation on a subset of symbols.
The definition of interpretation can be extended naturally to terms and formulae. For a term t (or a formula φ), we denote

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 129
tM (or φM) the value of t (or φ) under the interpretation M . We say M satisfies (resp. falsifies) a formula φ if and only if
φM is true (resp. false).

A �-theory T is defined by a set of �-sentences. A T -interpretation M is a �-interpretation such that all �-sentences
in T are evaluated to be true under M . Given a theory T , a formula φ is (1) T -valid (|=T φ) iff φ is satisfied by all
T -interpretations; (2) T -satisfiable iff there is at least one T -interpretation that satisfies φ; (3) T -unsatisfiable iff φ is
falsified by all T -interpretations.

2.2. The theory of equality

Equality over terms is expressed in the theory of equality, denoted by TE . The signature of TE consists of �F =
{ f , g, h, . . . } and �P = {=, P , Q , R, . . . }. TE has four axioms: reflexivity, symmetry, transitivity and consistency. The first
three axioms define the predicate “=” as an equivalence relation, while the last axiom guarantees that each input of a
function or predicate is associated to exactly one output. All four axioms together make “=” a congruence relation. The other
symbols in the signature are uninterpreted as TE does not impose any assumptions on the their interpretations except for
the requirement of consistency. Since we are mostly interested in uninterpreted symbols, we use the term “symbol” to refer
to uninterpreted symbols in the rest of the paper.

Though the validity problem for TE is undecidable due to the undecidability of first-order logic [17], its quantifier-free
fragment is decidable in polynomial time using a procedure known as congruence closure [18]. Given a formula φ, this
algorithm attempts to construct a congruence relation over subterms of φ, or to prove that such relation does not exist.

Example 1. Consider a formula:

φ : f (a) = f (b) ∧ a �= b

Subterms of φ are Sφ = {a, b, f (a), f (b)}. By the congruence closure algorithm, we can construct a relation R of subterms
given by the partition Sφ/R = {{a}, {b}, { f (a), f (b)}}. Therefore, φ is TE-satisfiable.

2.3. Craig interpolation

A Craig interpolant ρ is a formula for an inconsistent pair of formulae (φ, ψ) such that ρ is implied by φ, inconsistent
with ψ and refers only to non-logical symbols occurring in both φ and ψ .1 By Craig’s interpolation theorem [19], such
interpolant ρ exists for an arbitrary inconsistent pair of formulae (φ, ψ) in first-order logic. Interpolation was proposed for
model checking, firstly in propositional logic [20]. Craig interpolation also holds for underlying theories [21]. Suppose an
inconsistent pair of formulae (φ, ψ) in theory T , there exists an interpolant ρ such that (1) φ →T ρ , which denotes that
φ → ρ holds under all the T -interpretations; (2) ρ is inconsistent with ψ ; (3) ρ refers only to non-logical symbols of φ
and ψ in common. Eligible theories include equality [22,23], linear real arithmetic [22,24], Presburger arithmetic [24,25],
arrays without extensionality [24,26,27], etc.

There are two main kinds of approaches to compute interpolant. The first extracts interpolant from the proof derived
from inconsistency [20,22,28], which is adopted by some important interpolating theorem provers such as Z3 [29] and
MathSAT [16]. The latter involves reduction of the interpolation problem to constraint solving [23,30].

3. A motivating example

In this section we demonstrate our parallel SMT solving technique informally using a small example. Consider the fol-
lowing unsatisfiable TE-formula φ:

((x0 = y0) ∨ (x0 = z0)) ∧ ((y0 = x1) ∨ (x0 = z0))∧
((x0 = y0) ∨ (z0 = x1)) ∧ ((y0 = x1) ∨ (z0 = x1))∧
((x1 = y1) ∨ (x1 = z1)) ∧ ((y1 = x2) ∨ (x1 = z1))∧
((x1 = y1) ∨ (z1 = x2)) ∧ ((y1 = x2) ∨ (z1 = x2))∧
((x2 = y2) ∨ (x2 = z2)) ∧ ((y2 = x3) ∨ (x2 = z2))∧
((x2 = y2) ∨ (z2 = x3)) ∧ ((y2 = x3) ∨ (z2 = x3))∧
(x0 �= x3)

φ is in CNF consisting of 13 clauses and contains 10 constant symbols. In what follows, we solve the satisfiability of φ using
3 threads T0, T1, T2 in parallel.

1 The original Craig interpolant ρ is for a valid implication φ → ψ , such that (1) φ → ρ; (2) ρ → ψ and (3) ρ is defined over common symbols of φ
and ψ . The interpolant for an inconsistent pair of formulae is also called reverse interpolant. However, this does not make a substantial difference in the
context of this paper.

130 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Table 1
Distribution of symbols in subformulae ψ1 and ψ2. • in column x0 and row ψ1 indicates that x0 appears in ψ1.

x0 y0 z0 x1 y1 z1 x2 y2 z2 x3

ψ1 • • • • • • •
ψ2 • • • • •
shared • •

Decomposition We distribute clauses of φ into 2 subformulae ψ1, ψ2. The first 8 clauses are distributed to ψ1 and the
others are distributed to ψ2. Table 1 shows that ψ1 contains 7 symbols and ψ2 contains 5 symbols, while they share only 2
symbols.

Solving subformulae We check the satisfiability of ψ1 on thread T1 and ψ2 on thread T2. Both ψ1 and ψ2 are satisfiable,
however, it is insufficient to conclude that ψ1 ∧ ψ2 is satisfiable because they may have inconsistent interpretations on the
shared symbols. Then we compute an interpretation on shared symbols (namely shared interpretation) on the thread T0 such
that this interpretation is consistent with ψ1 and ψ2 simultaneously.

Conciliation We choose a candidate shared interpretation M S arbitrarily, for example, one that corresponds to the congru-
ence relation {{x0}, {x2}}. M S can be characterized as the constraint F S : x0 �= x2. Next we check whether F S is consistent
with ψ1 and ψ2 on threads T1, T2, respectively. It is found that (ψ1, F S) is inconsistent while (ψ2, F S) is consistent. Then
an interpolant i11 : x2 = x0 is derived from (ψ1, F S). By definition, we have ψ1 →TE i11, thus i11 is one of the logical
consequences implied by φ. In other words, interpolants can guide the search for a feasible shared interpretation.

Then, we choose another shared interpretation M ′
S satisfying the constraint i11 and it corresponds to the congruence

relation {{x0, x2}} which is characterized as the formula F ′
S : x0 = x2. From the inconsistency of (ψ2, F ′

S), we derive an
interpolant i22 : x2 �= x0.

Next, we search for a shared interpretation M ′′
S which satisfies i11 and i22. However, such interpretation does not exist

because i11 and i22 are in conflict. Formally, we have φ →TE (i11 ∧ i22) →TE ⊥ which implies that φ is falsified by all the
TE-interpretations. In other words, φ is unsatisfiable.

This example shows that our parallel SMT solving framework can be advantageous over the sequential DPLL(T) in two
aspects: (1) the search space for interpretations is substantially reduced, as in this running example, the interpretation
space for the original problem involves 10 constants while the space for shared interpretations involves only 2, thus the
conflicts could be discovered faster, (2) parallel threads share derived interpolants, which enables multiple threads to prune
the search space in different manners simultaneously.

4. The LDC framework

The LDC framework encompasses two main steps: lazy decomposition and conciliation. First the input formula φ is de-
composed into subformulae. If subformulae do not share symbols or any of them is unsatisfiable, (un)satisfiability of φ can
be directly derived. Otherwise, local reasoning inside subformulae is conciliated by unifying their interpretations on shared
symbols. Finally, we can either find an interpretation on shared symbols which is a witness of satisfiability of φ, or prove
that such interpretation does not exist (thus φ is unsatisfiable). The complete procedure of LDC framework is shown in
Algorithm 1.

4.1. Lazy decomposition

Let φ = φ1 ∧ · · · ∧φn be in CNF. A lazy decomposition ψ = {ψ1, . . . , ψk} is a partition of {φ1, . . . , φn} into k disjoint subsets
of clauses. Thus, ψ1, . . . , ψk are k subformulae of φ. A symbol x is shared in decomposition ψ if it is contained in multiple
subformulae. We use �ψ to denote the set of all shared symbols in ψ . If �ψ is empty, the satisfiability of φ is trivially
implied (shown from line 2 to 6). Otherwise, the satisfiability of ψ1, . . . , ψk can not imply the satisfiability of φ because
interpretations of shared symbols by subformulae may be inconsistent. Our decomposition method is lazy because shared
symbols are handled after solving each subformula. Laziness avoids expensive computations for resolving overlapping of
subformulae directly on the formula level.

4.2. Conciliation

The conciliation step determines whether a global interpretation satisfying φ exists by searching for an interpretation M S

on shared symbols where M S can be extended to a satisfying global interpretation. This step consists of iterations across
lines 10–21. G denotes global invariant, which is a conjunction of formulae implied by φ. Before the first iteration, we pick
an arbitrary shared interpretation M S since G is true (and thus there is no constraint on M S). In each iteration, we firstly
characterize M S as a semantically equivalent formula F S , and then check the consistency of F S with each subformula ψi by
Interpolate, which returns an interpretation satisfying ψi ∧ F S if (ψi, F S) is consistent, or an interpolant Ii such that

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 131
Algorithm 1: The LDC framework.
Input : φ , k
Output : sat if φ is satisfiable; unsat otherwise

1 if k ≤ 1 then return Solve(φ);
2 {ψ1, . . . , ψk} ← Decompose(φ ,k);
3 parfor i = 1, . . . , k do
4 si ← Solve(ψi);
5 if si = unsat then return unsat;

6 if �ψ = ∅ then return sat;
7 G ← true;
8 MS ← ComputeSharedInterp(G,ψ);
9 repeat

10 F S ← Formulate(M S);
11 G ′ ← G;
12 parfor i = 1, . . . , k do
13 (Ii , Mi , f lag) ← Interpolate(ψi ,F S);
14 if f lag = true then G ′ ← G ′ ∧ Ii ;

15 if G ′ = G then
16 if CombineInterp(M S , M1, . . . , Mk) =true then return sat;
17 else MS ← RefineSharedInterp(M S , M1, . . . , Mk);

18 else
19 G ← G ′;
20 if G is unsatisfiable then return unsat;
21 else MS ← ComputeSharedInterp(G,ψ);

22 until false;

ψi → Ii → ¬F S otherwise. The interpolant Ii can be regarded as an over-approximation of ψi with respect to F S , and it is
used to refine the global invariant G , as shown in line 14. Even if k pairs (ψ1, F S), . . . , (ψk, F S) are all consistent, φ is not
necessarily satisfiable because M1, . . . , Mk may not be combinable into a global interpretation for φ. The following example
demonstrates this point.

Example 2. Consider the unsatisfiable formula φ in TE along with the decomposition ψ = {ψ1, ψ2}:

φ = f (a) = b ∧ f (b) �= c ∧ a = c︸ ︷︷ ︸
ψ1

∧

f (a) = d ∧ f (d) = e ∧ a = e︸ ︷︷ ︸
ψ2

By definition �ψ = { f , a}. We arbitrarily choose an interpretation M S on �ψ corresponding to the congruence relation
{{a}, { f (a)}}. M S is characterized as the formula F S : f (a) �= a, which is consistent with both ψ1 and ψ2. However, M S is
not the witness of satisfiability because φ is unsatisfiable.

Thus, we check whether M1, . . . , Mk are combinable by CombineInterp (line 16). If they are combinable, then φ is
satisfiable as the combination of M1, . . . , Mk is an interpretation that satisfies φ; otherwise M S needs to be refined (line 17)
for the next iteration.

If there exists an inconsistent pair (ψi, F S), the global invariant G will be refined by new derived interpolants. Then we
compute the new shared interpretation (line 21) for the next iteration by checking the satisfiability of G . If G is unsatisfiable,
φ is concluded to be unsatisfiable (line 20).

The conciliation step does not guarantee termination in general. However, for some theories such as TE we can instantiate
it with the certain termination property.

5. Instantiation in TE

To instantiate the LDC framework, one needs to carefully design the instantiations of 7 interfaces: Decompose, Solve,
ComputeSharedInterp, Formulate, Interpolate, CombineInterp and RefineSharedInterp.

5.1. Decompose: make lazy decomposition

Decompose distributes the clauses of the input formula to generate subformulae. The selection of decomposition heuris-
tic could essentially influence the efficiency of the decision procedure since the decomposition schema determines the
number of shared symbols and the complexities of subproblems. A desired decomposition ψ should have �ψ of small size,
because the conciliation step could terminate faster.

132 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Algorithm 2: The greedy decomposition algorithm.
Input : φ ,k
Output : {ψ1, . . . , ψk}

1 construct Gφ along with the weight function wφ ;
2 S ← ∅;
3 foreach i = 1, . . . , k − 1 do
4 ψi ← true;
5 if V φ = ∅ then continue;
6 find v∗ ∈ V φ with the minimum |�v∗ |;
7 remove v∗ from Gφ ;
8 ψi ← ψi ∧ v∗;
9 S ← S ∪ �v∗ ;

10 foreach v1, v2 ∈ V φ do
11 wφ((v1, v2)) ← (�v1 \ S) ∩ (�v2 \ S);

12 foreach v ′ ∈ V φ such that wφ((v ′, _)) = ∅ do
13 remove v ′ from Gφ ;
14 ψi ← ψi ∧ v ′;
15 S ← S ∪ �ψi ;

16 ψk ← ∧
v∈V φ

v;

17 return {ψ1, . . . , ψk}

Decomposition can be modeled as the graph partition problem. The clause graph of formula φ is Gφ = (V φ, Eφ), where
the set of vertices V φ corresponds to the set of clauses {φ1, . . . , φn} and the set of edges Eφ ⊆ V φ × V φ × 2� consists of
labeled edges (v1, v2, S) where the clauses v1 and v2 share the set of symbols S . Formally, the label function of edges
wφ : Eφ → � is defined as

wφ((v1, v2)) = �v1 ∩ �v2

where �vi denotes the set of symbols in the clause vi (i = 1, 2). To minimize the size of �ψ , it suffices to find {V φ
1 , . . . , V φ

k },
a k-cut of V φ that minimizes∣∣∣∣∣∣∣

k⋃
i=1

k⋃
j=i+1

⋃
v1∈V φ

i ,v2∈V φ

j

wφ((v1, v2))

∣∣∣∣∣∣∣
Finding the exact solution of this combinatorial optimization problem is generally NP-hard and computationally pro-

hibitive in practice, especially when the size of φ is very large. Therefore a fast greedy approximation algorithm is employed
instead.

Algorithm 2 illustrates our greedy decomposition. To decompose the input formula into k subformulae (k > 1), the
algorithm runs in (k − 1) iterations. In each iteration, we find a clause v∗ from V φ with the minimum set of symbols,
remove it from Gφ and distribute it to the current subformula ψi . Next, we add symbols in distributed clause to the set S ,
and update the weight function wφ by eliminating symbols in S . Then all the isolated clauses (a clause v ∈ V φ is isolated
when wφ((v, v ′)) = ∅ for any other clause v ′ ∈ V φ) are distributed to ψi . All the symbols contained in ψi are added to S
for the next iteration. After (k − 1) iterations, (k − 1) subformulae are generated and the remaining clauses form ψk . When
V φ becomes empty, the remaining unassigned subformulae are true.

Example 3. Decompose the following formula φ into 3 subformulae.

(a ∨ b ∨ ¬c)︸ ︷︷ ︸
v1

∧ (c ∨ d ∨ e)︸ ︷︷ ︸
v2

∧ (a ∨ c)︸ ︷︷ ︸
v3

∧ (c ∨ ¬e)︸ ︷︷ ︸
v4

First we construct the clause graph Gφ for input formula φ, shown in Fig. 1a. Notice that clause v3 contains the fewest
symbols, then we remove v3 from Gφ and update weight function, shown in Fig. 1b. Now v1 is an isolated node as it
shares no symbols with any other clauses. Thus we remove v1 and update the Gφ again. After the first iteration we have
ψ1 : v1 ∧ v3.

Next we work on the clause graph shown in Fig. 1c to yield the second subformula ψ2 : v4. Finally, the remaining clause
v2 composes the third subformula ψ3. The output decomposition is ψ = {ψ1, ψ2, ψ3} where �ψ = {c, e}.

The time complexity of Algorithm 2 is discussed as follows. First the construction of Gφ has O(|V φ |2). For one iteration
from line 3 to 15, finding v∗ (in line 6) takes O(|V φ |) time, updating weight function (from line 10 to 11) takes O(|V φ |2)
time and distributing clauses for ψi (from line 12 to 14) has O(|V φ |2) time complexity. Hence, the overall worst-case time
complexity of Algorithm 2 is O(k|V φ |2) which is polynomial in the number of clauses of the input formula φ.

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 133
Fig. 1. The procedure of greedy decomposition method on formula φ in Example 3.

Algorithm 3: The procedure of ComputeSharedInterp.
Input : G ,ψ
Output : MS

1 if G = true then
2 MS ← (DS , (_)M S) where DS = {μ1, . . . , μm}, cM S

i = μi for each constant ci ∈ �ψ (1 ≤ i ≤ m);
3 return MS

4 compute MS such that MS |= G;
5 foreach constant c ∈ �ψ and cM S is not defined do
6 (_)M S ← (_)M S ∪ (c, μ) where μ ∈DS ;

7 return MS

5.2. Solve and Interpolate

Solve is to determine the satisfiability of a subformula by invoking an existing solver. Interpolate attempts to
compute the interpolant between two formulae ψi and F S . If they are inconsistent, we compute an interpolant Ii and set
f lag to true; otherwise we derive an interpretation Mi satisfying ψi ∧ F S and set f lag to false. Existing interpolation engine,
such as Z3, MathSAT, can be utilized to compute interpolant in various theories.

5.3. ComputeSharedInterp: compute a shared interpretation

ComputeSharedInterp is to derive a shared interpretation satisfying the global invariant G . In the following, we
define some concepts to serve as the vehicle for formalizing our discussion.

Definition 1 (TE-interpretation). Given a congruence relation {C1, . . . , Cn} where C1, . . . , Cn are n congruence classes of terms,
there is a TE-interpretation M = (D, (_)M) such that

1. D = {μ1, . . . , μn} where μ1, . . . , μn are labels for C1, . . . , Cn respectively;
2. cM = μi if c is a constant symbol and c ∈ Ci ;
3. f M(μi1 , . . . , μik) = μ j if there exists a term f (t̄1, . . . , t̄k) ∈ C j and t̄1 ∈ Ci1 , . . . , t̄k ∈ Cik .

It is possible to assign a different set of labels as the domain of a TE-interpretation. Thus, a congruence relation can be
represented by many isomorphic interpretations. The isomorphism over TE-interpretations is defined below.

Definition 2 (Isomorphism of TE-interpretations). Let M1 and M2 be TE-interpretations, D1 and D2 be the domains of M1
and M2 respectively. A map h :D1 →D2 is an isomorphism of M1 into M2 if the following condition holds:

1. h is bijective;
2. h(cM1) = cM2 for each constant symbol c ∈ �;
3. h(f M1 (d1, . . . , dn)) = f M2 (h(d1), . . . , h(dn)), for each n-ary function symbol f ∈ � and d1, . . . , dn ∈D1.

We use M1 ∼= M2 to denote that M1 is isomorphic to M2.

Next we give a formal definition of shared interpretation.

Definition 3 (Shared interpretation). Given a formula φ and its decomposition ψ = {ψ1, . . . , ψk}, M S is a shared interpretation
if for each constant symbol c ∈ ⋃

1≤i< j≤k
(�ψi ∩ �ψ j), cMS is defined.

The procedure of ComputeSharedInterp is shown in Algorithm 3. In essence, we derive a shared interpretation M S
by computing an interpretation M satisfying G using an existing SMT solver. For each constant c that is not interpreted

134 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Algorithm 4: The procedure of ExtractSFA.
Input : MS , M1, . . . , Mk

Output : F : the set of shared function applications which have no valuations in MS

1 foreach i = 1, . . . , k do
2 Mi ← Unify(Mi ,MS);

3 F ← ∅;
4 foreach (f , d) such that f M S (d) is not defined and there exists 1 ≤ i < j ≤ k such that both f Mi (d) and f M j (d) are defined do
5 F ← F ∪ {(f , d)};

6 return F

by M , we specify an arbitrary value in the domain D for c to refine M . Finally, the fully-refined M is M S . It is necessary
to address uninterpreted constants in this way because computing the shared interpretation is to complete a candidate
interpretation for each ψi (1 ≤ i ≤ k). The outcome is that either for each ψi (1 ≤ i ≤ k) we luckily find an interpretation
that satisfies each ψi while M S is possibly the witness of global satisfiability, or M S helps to derive new interpolants which
are logical consequences of φ.

5.4. Formulate: characterize interpretation as formula

Formulate is to characterize an interpretation M S as a semantically equivalent formula F S . In TE , an interpretation
is associated with a congruence relation corresponding to a partition of terms, thus F S consists of two kinds of clauses:
(1) equalities over terms in each congruence class; (2) inequalities over the representatives of all the congruence classes.
More specifically, let M S be an interpretation corresponding to a congruence relation represented as{

{t1
1, . . . , tk1

1 }, . . . , {t1
n, . . . , tkn

n }
}

To characterize M S as a formula F S , follow the steps below:
(1) build n equalities for n congruence classes:

C1 : t1
1 = · · · = tk1

1
...

Cn : t1
n = · · · = tkn

n

(2) build a constraint expressing the distinction of n representatives:

Cn+1 :
∧

1�i< j�n

t1
i �= t1

j

(3) conjunct n + 1 constraints to form F S :

F S = C1 ∧ · · · ∧ Cn ∧ Cn+1

5.5. CombineInterp: combine interpretations for subformulae

This procedure checks whether k interpretations M1, . . . , Mk are combinable under the shared interpretation M S . In-
formally, M1, . . . , Mk can be combined into an interpretation satisfying the input formula φ if their valuations on shared
symbols are included in M S . This is necessary when subformulae share function symbols of non-zero arity, as Example 2
illustrates.

Given an interpretation M with the domain D, a function application is a pair (f , d) where f is an n-ary (n > 0) function
symbol and d ∈ Dn . In the context of LDC, we say (f , d) is a shared function application if there exists i, j (1 ≤ i < j ≤ k) such
that f Mi (d) and f M j (d) are defined. The ExtractSFA procedure, shown in Algorithm 4, is to collect all the shared function
applications which have no valuations in M S . Before collecting function applications, ExtractSFA calls the Unify to unify
each Mi with M S by substituting the certain domain elements in Di of Mi with the domain elements in DS of M S in order
to make their interpretations on shared symbols consistent in literal.

The CombineInterp procedure, shown in Algorithm 5, is to call the ExtractSFA procedure and return whether the
returned set F is empty. If F is empty, then all the shared function applications have valuations in M S and thus M1, . . . , Mk
can be combined into an interpretation satisfying φ (in other words, M S is the witness of global satisfiability).

Unify Elements in the domain Di of each interpretation Mi are unified with respect to M S by substitution. The rules for
element substitution are shown in Fig. 2. The notation M[μ/ν] denotes a new interpretation with all the occurrences of ν
in M substituted with μ, where ν is an element in the domain of M . Therefore, the substitution operations make changes

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 135
Algorithm 5: The procedure of CombineInterp.
Input : MS , M1, . . . , Mk

Output : true if MS is the witness of global satisfiability; false otherwise
1 F ← ExtractSFA(M S , M1, . . . , Mk);
2 return F = ∅

Fig. 2. The rules of element substitution for Unify.

to not only the domain of M , but also (_)M . The Const-Sub rule substitutes the element ν in Di with μ in DS if there is a
constant symbol c interpreted as μ and ν by M S and Mi , respectively. The Func-Sub rule is applied to function applications.
Fig. 2 shows a special case of this rule for n-ary (n > 0) function applications. The element ν in Di is substituted as μ in DS

if (d, ν) ∈ f Mi and (d, μ) ∈ f MS . To unify two interpretations Mi and M S , we first apply the Const-Sub rule until saturation
and then apply the Func-Sub rule until saturation. We have the following lemmas on element substitution.

Lemma 1. Each element in Di can be substituted for at most once.

Proof. Let �M denote the set of symbols interpreted by M . Consider an element ν ∈ Di substituted as μ ∈ DS , then there
exists a term t which is constituted by the symbols in (�Mi ∩ �MS), such that tMi = ν and tMS = μ. Let M ′

i be the new
interpretation after element substitution, we have tM′

i = μ. If μ can be further substituted by μ′ ∈ DS where μ �= μ′ , then
tMS = μ′ . Hence we have (t = t)MS = (μ = μ′) = false, which is a contradiction. �
Lemma 2. Upon termination of the Unify procedure, none of the substitution rules are applicable.

Proof. Assume the Const-Sub rule is applicable, then there exists a constant c ∈ (�Mi ∩ �MS) such that cMS = μ, cMi = ν
and μ �= ν . If ν is the substituted element, then the assumption contradicts to Lemma 1. Otherwise, this element should
be substituted before applying the Func-Sub rule. It is trivial that the Func-Sub rule is not applicable when the Unify
procedure finishes. �
Example 4. Consider the formula φ and its decomposition ψ = {ψ1, ψ2} in Example 2. We arbitrarily choose a shared
interpretation M S which corresponds to the congruence relation {{a}, { f (a)}}, and its semantically equivalent formula F S is
a �= f (a). Let M1 and M2 be interpretations such that M1 |= (ψ1 ∧ F S) and M2 |= (ψ2 ∧ F S). The congruence relations of M1

and M2 are

M1 : {{ f (a),b}, { f (b)}, {a, c}}
M2 : {{ f (a),d}, {a, e, f (d)}}

We have M S = (DS , (_)MS), M1 = (D1, (_)M1) and M2 = (D2, (_)M2), such that

DS = {μ1,μ2}
D1 = {ν1, ν2, ν3}
D2 = {ρ1,ρ2}
(_)MS = {(a,μ1), (f , {(μ1,μ2)})}
(_)M1 = {(a, ν3), (b, ν1), (c, ν3), (f , {(ν3, ν1), (ν1, ν2)})}
(_)M2 = {(a,ρ2), (d,ρ1), (e,ρ2), (f , {(ρ2,ρ1), (ρ1,ρ2)})}

To unify M1 with respect to M S , we have D1 ← D1[μ1/ν3] by applying the Const-Sub rule, and D1 ← D1[μ2/ν1] by
applying the Func-Sub rule. As the result, the updated M1 is as follows.

D1 = {μ2, ν2,μ1}
(_)M1 = {(a,μ1), (b,μ2), (c,μ1), (f , {(μ1,μ2), (μ2, ν2)})}

Analogously we have M2 ← Unify(M2,M S) such that:

D2 = {μ2,μ1}
(_)M2 = {(a,μ), (d,μ), (e,μ), (f , {(μ ,μ), (μ ,μ)})}
1 2 1 1 2 2 1

136 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Algorithm 6: The procedure of RefineSharedInterp.
Input : MS , M1, . . . , Mk

Output : The refined MS

1 F ← ExtractSFA(M S , M1, . . . , Mk);
2 foreach (f , d) ∈ F do
3 f M S ← f M S ∪ (d, d0) where d0 ∈ DS ;

4 return MS

Table 2
The decision procedure by steps given the input problem φ and its lazy decomposition ψ .

No. Operation #Line Input Output

1 Solve 4 ψi s1 = sat; s2 = sat; s3 = sat
2 ComputeSharedInterp 8 G ,ψ MS = (DS , (_)M S) where DS = {μ1,μ2,μ3}, (_)M S = {(a,μ1), (b,μ2), (c,μ3), (f , {})}
3 Formulate 10 MS F S : (a �= b) ∧ (b �= c) ∧ (a �= c)
4 Interpolate 13 (ψi , F S)

1 ≤ i ≤ 3
(Ii , Mi , f lag) = (−, (Di , (_)Mi), false) where
D1 = {ν1, ν2, ν3}, (_)M1 = {(a, ν1), (b, ν2), (c, ν3), (f , {(ν2, ν3)})}
D2 = {ρ1,ρ2,ρ3}, (_)M2 = {(a,ρ1), (b,ρ2), (c,ρ3), (f , {(ρ1,ρ3), (ρ3,ρ1)})}
D3 = {η1, η2, η3, η4, η5}, (_)M3 = {(a, η1), (b, η2), (c, η4), (f , {(η1, η4), (η2, η5)})}

5 CombineInterp 16 MS ,M1,M2,M3 false
6 RefineSharedInterp 17 G ,ψ DS = {μ1,μ2,μ3,μ4,μ5}, (_)M S = {(a,μ1), (b,μ2), (c,μ3), (f , {(μ1,μ4), (μ1,μ5)})}
7 Formulate 10 MS F S : ∧

t1,t2∈{a,b,c, f (a), f (b)}
t1 �= t2

8 Interpolate 13 (ψi , F S)

1 ≤ i ≤ 2
(I1, M1, f lag) = (f (b) = c,−, true)

(I2, M2, f lag) = (f (a) = c,−, true)

9 update G 14 – G : (f (b) = c) ∧ (f (a) = c)
10 ComputeSharedInterp 8 G ,ψ DS = {μ1,μ2,μ3}, (_)M S = {(a,μ1), (b,μ2), (c,μ3), (f , {(μ1,μ3), (μ2,μ3)})}
11 Formulate 10 MS F S : (a �= b) ∧ (b �= c) ∧ (a �= c) ∧ c = f (a) = f (b)

12 Interpolate 13 (ψ3, F S) (I3, M3, f lag) = (f (a) �= f (b),−, true)

13 update G 14 – G : (f (b) = c) ∧ (f (a) = c) ∧ (f (a) �= f (b))

14 return 20 – unsat

Next, we collect the shared function applications that have no valuations in M S by calling ExtractSFA(M1,M2,M S).
There are two shared function applications: (f , μ1) and (f , μ2). Since f MS (μ1) is defined, the resultant set F consists of
one element (f , μ2). Therefore, the CombineInterp procedure returns false.

5.6. RefineSharedInterp: refine the shared interpretation

RefineSharedInterp refines the valuations of shared function symbols in M S in order to make M S have valuations
on all the shared function applications over M1, . . . , Mk . Algorithm 6 illustrates its procedure which is to specify arbitrary
values for shared function applications that formerly have no valuations in M S . The refined model M ′

S has an important
property: G MS = true =⇒ G M′

S = true. This is because M ′
S contains all the information in M S which is sufficient to interpret

G as true.

Example 5. Consider the formula and its decomposition in Example 2. First, the ExtractSFA procedure derives the set
of shared function applications F = {(f , μ2)}. Next, we can refine the M S by specifying a value for f MS (μ2). The refined
M S = (DS , (_)MS) is as follows.

DS = {μ1,μ2}
(_)MS = {(a,μ1), (f , {(μ1,μ2), (μ2,μ1)})}

And thus M S can be characterized as the following formula:

F S : a = f (f (a)) ∧ a �= f (a)

5.7. Running example

We demonstrate the complete procedure of instantiated LDC using the following TE-formula φ:

f (b) = c ∧ b �= c︸ ︷︷ ︸
ψ1

∧a = f (c) ∧ f (a) = c︸ ︷︷ ︸
ψ2

∧a �= b ∧ f (a) �= f (b)︸ ︷︷ ︸
ψ3

Assume that the decomposition is ψ = {ψ1, ψ2, ψ3}. Table 2 lists the detailed procedure of solving the satisfiability of φ.
For the sake of clarity, we elaborate the step 6 as follows. After the Unify operation, M1, M2, M3 are updated as

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 137
D1 = {μ1,μ2,μ3}
D2 = {μ1,μ2,μ3}
D3 = {μ1,μ2,μ3, η4, η5}
(_)M1 = {(a,μ1), (b,μ2), (c,μ3), (f , {(μ2,μ3)})}
(_)M2 = {(a,μ1), (b,μ2), (c,μ3), (f , {(μ1,μ3), (μ3,μ1)})}
(_)M3 = {(a,μ1), (b,μ2), (c,μ3), (f , {(μ1, η4), (μ2, η5)})}

The ExtractSFA procedure returns the set F = {(f , μ1), (f , μ2)} of shared function applications that have no valuations
in M S . The values for f MS (μ1) and f MS (μ2) are then specified and the shared interpretation M S is refined as follows.

DS = {μ1,μ2,μ3,μ4,μ5}
(_)MS = {(a,μ1), (b,μ2), (c,μ3), (f , {(μ1,μ4), (μ2,μ5)}

6. Discussion

In this section we analyze the LDC framework and its instantiation in TE from a theoretical perspective. First we will
show that LDC is sound and complete, i.e. it always returns correct results. Then, we will prove that the instantiation in TE

terminates after a finite number of steps. Finally, we discuss the generality of LDC.

6.1. Soundness and completeness

First, we begin with formal specifications of LDC interfaces.
Decompose is to make a k-decomposition of the formula φ, given φ and k:

Decompose(φ,k)= {ψ1, . . . ,ψk}
Solve is to determine the satisfiability of input formula φ:

Solve(φ)=
{

sat φ is satisfiable
unsat φ is unsatisfiable

ComputeSharedInterp derives a shared interpretation M S such that the domain of (_)MS is �ψ and M S satisfies the
constraint G:

ComputeSharedInterp(G,ψ)= M S
where G MS = true and
for each constant c ∈ �ψ, cMS is defined

Formulate is to convert the interpretation M S into its semantically equivalent formula F S . The concept of semantically
equivalent formula is defined as follows.

Definition 4. Given an interpretation M and a formula φ, we say φ is fully interpreted by M iff each sub-term of φ can be
interpreted as an element in the domain of M . We use the notation LM to denote the set of all the formulae which can be
fully interpreted by M .

Definition 5. Given an interpretation M , F is its semantically equivalent formula iff

∀φ ∈ LM .φM = true ⇐⇒ (φ ∧ F) is satisfiable

We use the notation M � F to denote that the interpretation M and the formula F are semantically equivalent. Note that �
is non-commutative.

Lemma 3. Given an interpretation M and its semantically equivalent formula F , for a formula φ ∈ LM such that φM = true, we have
F → φ .

Proof. By Definition 5, (¬φ)M = false ⇐⇒ (¬φ ∧ F) is unsatisfiable. Thus (¬F ∨ φ) is valid, and we have F → φ. �
Then, the formal specification of Formulate is as follows.

Formulate(M S)= F S =⇒ M S � F S

Furthermore, given an interpretation M , its semantically equivalent formula always exists. Consider two sets of formulae

FM = {φ | φM = true} and FM̄ = {φ | φM = false}, then we have F =
(∧

φ∈F
φ

)
∧

(∧
ρ∈F

¬ρ

)
such that M � F holds.
M M̄

138 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Interpolate computes either an interpolant or an interpretation given two formulae.

Interpolate(F1, F2)=
{

(I,−, true) F1 → I → ¬F2
(−, M, false) M |= (F1 ∧ F2)

CombineInterp is to check whether M1, . . . , Mk are combinable with respect to the shared interpretation M S where
M S � F S and Mi |= (ψi ∧ F S) for each 1 ≤ i ≤ k. It returns true if M1, . . . , Mk are combinable, or false otherwise.

CombineInterp(M S , M1, . . . , Mk)=
{

true M1, . . . , Mk are combinable under M S

false Otherwise

The interpretation combinability is formally defined as follows.

Definition 6 (Interpretation combinability). k interpretations M1, . . . , Mk are combinable under the shared interpretation M S

if there exists M ′
1
∼= M1, . . . , M ′

k
∼= Mk where M ′

1 = (D1, (_)M′
1), . . . , M ′

k = (Dk, (_)M′
k) such that:

1. �MS = ⋃
1≤i< j≤k

(�Mi ∩ �M j);

2. cM′
i = cM′

j = cMS for each constant c ∈ �Mi ∩ �M j (1 ≤ i < j ≤ k);

3. for each n-ary (n > 0) function symbol f ∈ �Mi ∩ �M j and d ∈ (Di ∩ D j)
n (1 ≤ i < j ≤ k), if f M′

i (d) and f M′
j (d) are

defined, then f MS (d) is also defined and we have f M′
i (d) = f M′

j (d) = f MS (d).

Then, M1, . . . , Mk can be combined into a new interpretation M = (D, (_)M) such that:

1. D = ⋃
1≤i≤k

Di ;

2. cM = cM′
i = cM′

j = cMS for each constant c ∈ �Mi ∩ �M j (1 ≤ i < j ≤ k);

3. cM = cM′
i for each constant c ∈ (�Mi \ �MS) (1 ≤ i ≤ k);

4. f M = ⋃
1≤i≤s

f
M′

li for each n-ary (n > 0) function symbol f such that f ∈ �Mt (t = l1, . . . , ls and 1 ≤ l1 < · · · < ls ≤ k) and

f /∈ �Mt′ (1 ≤ t′ ≤ k and t′ /∈ {l1, . . . , ls});

5. f M = f M′
i for each n-ary (n > 0) function symbol f ∈ (�Mi \ �MS) (1 ≤ i ≤ k).

The notation M = M1
⊕
MS

· · ·⊕
MS

Mk is used to denote that M1, . . . , Mk are combined into a new interpretation M with respect

to the shared interpretation M S .

RefineSharedInterp is to compute a new shared interpretation by specifying values for shared function applications
which are not specified by M S . Let M ′

S be the result of RefineSharedInterp(M S ,M1, . . . , Mk) and then we have:

1. M ′
S �= M S ;

2. �M′
S
= �MS ;

3. for each constant c ∈ �MS , cMS = cM′
S ;

4. for each n-ary function f ∈ �MS , f MS ⊆ f M′
S .

In what follows, we will prove the soundness and completeness of LDC framework, i.e. the LDC procedure returns correct
result given an arbitrary input formula φ and the size of decomposition k, on the premise that the procedure terminates.

Lemma 4. φ → G holds during the LDC procedure.

Proof. G is initialized as true on line 11 and trivially φ → true holds. Since G is strengthened by conjoining interpolants
which are logical consequences of φ, thus φ → G holds. �
Theorem 5. The LDC framework is sound and complete, on the premise that the decision procedure terminates.

Proof. We need to prove the following statement:

∀φ,k such that LDC(φ,k) terminates.φ is satisfiable ⇐⇒ LDC(φ,k)= sat

Then, given arbitrary formula φ and the size of decomposition k (k > 0) such that LDC(φ, k) terminates, we wish to prove
the following two statements:

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 139
φ is satisfiable. =⇒ LDC(φ,k)= sat (Soundness)
LDC(φ,k)= sat =⇒ φ is satisfiable (Completeness)

where the soundness statement can be equivalently transformed as:

LDC(φ,k)= unsat =⇒ φ is unsatisfiable

Suppose LDC(φ, k)= unsat holds. As Algorithm 1 shows, the procedure terminates on either line 5 or 20. In the former

case, there exists a subformula ψi which is unsatisfiable. Then φ, as well as
k∧

j=1
ψ j , is also unsatisfiable. In the latter case,

G → ⊥ holds. Since φ → G holds by Lemma 4, we have φ → ⊥ and thus φ is unsatisfiable.
Suppose LDC(φ, k) = sat holds, then the procedure terminates on either line 6 or 16. In the former case, each ψi is

satisfiable and �ψ = ∅. Let Mi |= ψi for each i. Thus for two arbitrary interpretations Mi, M j (1 � i < j � k), we can simply
combine Mi and M j since �Mi ∩ �M j = ∅. Thus, we can also combine M1, . . . , Mk into an interpretation M such that

1. M = (D, (_)M) where D =
k⋃

j=1
D j , D j is the domain of M j ;

2. for each (constant or function) symbol s ∈
(

k⋃
j=1

�M j

)
, sM = sMi if s ∈ �Mi .

Therefore φ is satisfiable. In the latter case, CombineInterp returns true, thus M1, . . . , Mk are combinable under M S .
Thus we can also construct a total interpretation M = M1

⊕
MS

· · ·⊕
MS

Mk such that ψM
i = true for each 1 � i � k. Therefore,

φM = true holds and φ is satisfiable. �
To establish the soundness and completeness of the instantiation of LDC in TE , we need to prove (1) the soundness of

7 interfaces in TE (as their behaviors meet their specifications), and (2) LDC in TE terminates. In what follows, we focus
on the former while the latter is discussed in Section 6.2. Decompose is sound as long as it produces k-decomposition,
which is ensured by the decomposition algorithm. The soundness of Solve and Interpolate relies on the soundness
of underlying SMT solver and interpolation engine, which is assumed. ComputeSharedInterp is also sound because
(1) the underlying SMT solver is sound, and (2) M S contains valuations for all the shared constants, which is ensured by
Algorithm 3. The soundness for other interfaces, however, should be established carefully.

Lemma 6. Formulate in TE is sound.

We formalize the specifications for Unify and ExtractSFA before establishing the soundness of CombineInterp
and RefineSharedInterp. First of all, we define equality of domain elements across two interpretations.

Definition 7. Given two interpretations M1 and M2 with domains D1 and D2, respectively. We say ν1 ∈D1 equals to ν2 ∈D2
across M1 and M2 (denoted by ν1 ∼ ν2) if one of the following conditions holds:

1. ν1 = ν2;
2. there exists c ∈ �M1 ∩ �M2 such that cM1 = ν1 and cM2 = ν2;
3. there exists f ∈ �M1 ∩ �M2 where f is an n-ary (n > 0) function symbol, such that f M1 (ν11, . . . , ν1n) = ν1 and

f M2 (ν21, . . . , ν2n) = ν2 where ν1i ∼ ν2i (1 ≤ i ≤ n).

For two vectors d1 = (ν11, . . . , ν1n) ∈ Dn
1 and d2 = (ν21, . . . , ν2n) ∈ Dn

2, we have d1 ∼ d2 if and only if ν1i ∼ ν2i for each
1 ≤ i ≤ n.

Unify is to convert an interpretation M into a new one M ′ with respect to the shared interpretation M S , such that:

1. M ∼= M ′;
2. Let h be the isomorphism of M into M ′ , D and DS be the domains of M and M S , respectively. For each ν ∈ D and

νS ∈DS , we have h(ν) = νS ⇐⇒ ν ∼ νS .

Lemma 7. Unify is sound.

Given M1, . . . , Mk and the shared interpretation M S , ExtractSFA returns a set F of shared function applications. All
the function applications (f , d) that meet the following requirements are in F .

140 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Fig. 3. A coarse-grained control-flow of LDC. Each node denotes an iteration of the main loop while C and R denote iterations calling
ComputeSharedInterp and RefineSharedInterp, respectively.

1. f is an n-ary (n > 0) function symbol, f ∈ �MS and d ∈Dn
S ;

2. there exists 1 ≤ i < j ≤ k such that:
(a) f ∈ �Mi ∩ �M j ;
(b) there exists di ∈ Dn

i , d j ∈ Dn
j such that both f Mi (di) and f M j (d j) are defined, di ∼ d, d j ∼ d and f MS (d) is not

defined.

Lemma 8. ExtractSFA is sound.

Lemma 9. CombineInterp in TE is sound.

The instantiation of RefineSharedInterp is also sound. It is trivial that the conditions 2, 3, 4 of its specification
hold. Assume that M ′

S = M S holds, then ExtractSFA would return ∅ on line 1 in Algorithm 6, and thus the previous
CombineInterp returns true and RefineSharedInterp would not be reached. Hence condition 1 also holds.

By Theorem 5, we have the following conclusion.

Lemma 10. LDC in TE is sound and complete, on the premise that it terminates.

6.2. Termination

In this subsection, we will prove that LDC in TE terminates. Algorithm 1 contains a main loop from line 10 to 21. In each
iteration of the main loop, we compute a new shared interpretation M S which helps to complete interpretations satisfying
subformulae or interpolants which are logical consequences of the input formula. Informally, M S marks the progress in
decision procedure and thus the computation of M S provides the core of the termination argument.

Iterations of the main loop can be abstracted into a coarse-grained control-flow sequence shown in Fig. 3. Each iteration
either calls ComputeSharedInterp when there exists an inconsistent pair (ψi, F S), or calls RefineSharedInterp
when every (ψi, F S) is consistent and M S is required to be refined. We use C-node to denote the iteration calling
ComputeSharedInterp, and R-node to denote the iteration calling RefineSharedInterp. Thus, the control-flow
sequence consists of C-nodes and R-nodes while the number of nodes is the number of iterations for the main loop. In
what follows, we demonstrate that the sequence has finite length for any input formula φ as the following statements hold:

1. between two neighboring C-nodes, there are a finite number of R-nodes;
2. there are a finite number of C-nodes in the sequence.

An interpretation graph can be constructed for the shared interpretation M S . Without loss of generality, �MS consists of
m constants c1, . . . , cm and n unary functions f1, . . . , fn . The interpretation graph of M S is a pair G ig = (V ig, E ig) of:

1. V ig =DS where DS is the domain of M S ;
2. E ig = {(v1, v2, i) ∈ V ig × V ig ×N | f MS

i (v1) = v2}. For (v1, v2, i) ∈ E ig , there is an edge from v1 to v2 with label i.

By the definition above, the out-degree of each node is no more than n. Moreover, the following lemmas show some
important properties of G ig .

Lemma 11. Let G ig = (V ig, E ig) be the interpretation graph of shared interpretation M S , and V C = {v | cMS = v, c ∈ {c1, . . . , cm}}.
Then, for each v ∈ (V ig \ V C), there exists a path from one vertex in V C to v.

Proof. For each v ∈ (V ig \ V C), there exists v ′ ∈ V ig and f i (1 � i � n) such that f MS
i (v ′) = v . Thus, there should be a

subterm f i(t) of G where (f i(t))MS = v and tMS = v ′ . If t is a constant, then P = 〈v ′, v〉 is the path. Otherwise, since
t is finitely constructible, t has the form of gh(. . . g1(c) . . .) where g1, . . . , gh ∈ { f1, . . . , fn} and c is constant. If we have
cMS = v∗

1, g
MS
1 (v∗

1) = v∗
2, . . . , g

MS
h (v∗

h) = v ′ where v∗
1, . . . , v

∗
h ∈ V ig , then P = 〈v∗

1, . . . , v
∗
h, v ′, v〉 is the path. �

Lemma 12. If |V ig| = 1 + m
(

N∑
i=0

ni

)
, there exists v ∈ (V ig \ V C), v ′ ∈ V C and the distance (i.e. length of the shortest path) from v ′

to v is no less than (N + 1).

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 141
Proof. We organize the vertices in V ig in a stratified manner. First, we put all the vertices in V C on the l0 level. Then, all
the vertices in V 1 are put on the l1 level, where

V 1 = {v ∈ V ig | ∃v ′ ∈ V C .the distance of (v ′, v) is 1}
Since |V C | = m, |V 1| � n|V C | = mn. Analogously, we put all the vertices in V N on the lN level, where

V N = {v ∈ V ig | ∃v ′ ∈ V C .the distance of (v ′, v) is N}

Since |V N | � n|V N−1| � · · · � nN |V C | = nNm, the number of vertices in l0, . . . , lN is no more than m
(

N∑
i=0

ni

)
. Thus, there

exists at least one vertex on the l j level where j > N . �
When RefineSharedInterp refines the shared interpretation M S , shared function applications are specified with

values, which introduces new edges in the interpretation graph. The length of the path from a vertex in V C to a vertex
in V ig \ V C is no more than |Sψi | because ψ contains no more than |Sψi | function application terms, each of which could

extend the length of such path by 1. Let N = max{|Sψi | | 1 � i � k}, by Lemma 12 there should be no more than m
(

N∑
i=0

ni

)
elements in DS . Then, we have the following theorem.

Theorem 13. There are a finite number of R-nodes between two neighboring C-nodes.

Proof. Since the distance for (v ′, v) is no more than N where v ′ ∈ V C and v ∈ (V ig \ V C), there are up to m
(

N∑
i=1

ni

)
edges in

the interpretation graph of M S . Also, on an R-node, at least one new edge is introduced. Therefore the number of R-nodes
between two neighboring C-nodes must be finite. �

On a C-node, there exists at least one inconsistent pair (ψi , F S) from which we can derive an interpolant Ii such that
ψi → Ii → ¬F S . Hence, such inconsistency is prevented in the subsequent C-nodes because I MS

i = false. To prove that the
number of C-nodes is finite, we will prove that there are a finite number of shared interpretations.

If t is a term, we denote with d(t) the depth of function application, that is, d(t) = 0 if t is a constant; d(t) = d(t′) + 1 if
t has the form f (t′). Let S = max{d(t) | t is subterm of φ}, we have the following lemma.

Lemma 14. For each subterm t of G, d(t) � (N + 1)S holds.

Before proving this lemma, we introduce some concepts on interpolation. Let A and B be two formulae with respective
signatures �A and �B , a symbol is A-colored if it is in �A \ �B , B-colored if it is in �B \ �A , and transparent if it is in
�A ∩ �B . A ground term t is: A-colored if it contains at least one A-colored symbol and others are transparent; B-colored if
it contains at least one B-colored symbol and others are transparent; AB-mixed if it contains at least one A-colored symbol
and one B-colored symbol; and transparent otherwise. Also, we use � to denote equality at the meta-level.

Proof of Theorem 14. Perform induction on C-nodes in the sequence. Let P (F) amount that for each subterm t in the
formula F , d(t) � (N + 1)S holds.

Basis: On the first C-node, F S consists of constants only. Thus for the interpolant Ii derived from the inconsistent pair
(ψi, F S), Ii also consists of constants. Since G is the conjunction of derived interpolants, P (G) holds.

Induction step: By hypothesis, P (G) holds on the previous C-node, then P (F S) also holds. If the previous R-nodes introduce
new terms to F S via RefineSharedInterp, we have S � 1 and for each new term t , d(t) � N , thus P (F S) still holds. For
the inconsistent pair (ψi, F S) and its interpolant Ii , each subterm of Ii is (1) subterm of ψi or F S ; (2) a transparent term t
such that ψi ∧ F S �TE ta � t ∧ t � tb where ta is a ψi -colored term, tb is a F S -colored term and ψi ∧ F S �TE ta � tb holds,
by equality-interpolating property [31]. Interpolant could introduce new terms, which belongs to the latter case. Let T N be
the set of all new introduced terms from interpolants. ta � tb can be derived by (1) transitivity rule; (2) congruence rule,
if ta ≡ f i(t′

a), tb ≡ f i(t′
b) and ψi ∧ F S �TE t′

a � t′
b . If there exists a transparent term t′ (t′ ∈ T N or t′ is a common subterm

of ψi and F S) such that ψi ∧ F S �TE t′
a � t′ ∧ t′ � t′

b , t can be f i(t′), which may be a new term to be added into T N . Since
new introduced terms are transparent, ta and tb could only be the subterm of ψi and F S respectively. For each (ta, tb),
congruence rule is applied for no more than S times because d(ta) � S . The number of possible ta is no more than N , thus
congruence rule is applied for up to N S times to introduce auxiliary transparent terms. Since for each common subterm tc

of ψi and F S we have d(tc) � S , the depths of new introduced terms are no more than (N +1)S . Hence, P (G) still holds. �

142 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Fig. 4. The schematic overview of PZ3.

Therefore, on each C-node in the iteration sequence, the shared interpretation M S derived by ComputeSharedInterp
is the congruence relation on a subset of the term set T = {t | d(t) � (N + 1)S}. Since each t ∈ T is constructed by shared
symbols (no more than m constants and n functions), |T | is bounded. Hence, the number of possible shared interpretations
is finite.

Our conclusion can be generalized for the case where the arity of function symbol is more than 1. Therefore, we have
the following theorems.

Theorem 15. There are a finite number of C-nodes in the sequence.

Theorem 16. LDC in TE terminates within finite steps.

Theorem 17. LDC in TE is sound and complete.

6.3. Generality

The LDC framework is irrelevant to a specific theory or solver. In principle, we can instantiate LDC in any theory upon
any sequential solver. However, there are several limitations on the generality.

First, the underlying theory (or theory combination) should admit quantifier-free interpolation. In the theory of integers
(TZ), interpolant could introduce quantifiers. For example, suppose φ : y = 2x and ψ : y = 2z + 1, there does not exist an
interpolant without quantifiers. Quantifier-free fragments of some theories, such as TZ and the theory of array (TA) [22],
are not closed under Craig interpolation. By the fact that quantifier elimination implies quantifier-free interpolation [32],
theories such as TE , theory of reals (TR), theory of rationals (TQ), theory of integer difference logic (TIDL) and theory of
recursive data structure (TRDS) admit quantifier-free interpolation. Bruttomesso et al. also show that strong amalgamabil-
ity guarantees the modularity of quantifier-free interpolation [32], which guides the construction of theory combination
admitting quantifier-free interpolation.

Second, it is difficult to guarantee that the instantiation terminates given a formula of finite size in some underlying
theories.

7. Experimental evaluation

The LDC framework is implemented as a parallel SMT solver PZ3, which is based on a widely used open-source SMT
solver Z3 [13]. The following aspects of PZ3 are studied: (1) speed-up over Z3 on various problems; (2) parallel efficiency
and its influence factors, especially the sparseness of input formulae; (3) comparison between LDC and the state-of-the-art
portfolio approach [33].

7.1. Solver implementation

PZ3 is implemented upon APIs provided by Z3 4.3.3, as Z3 exposes various functionalities such as satisfiability testing,
interpolation and formula simplification via APIs. For now PZ3 only supports quantifier-free equality logic with uninterpreted

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 143
Table 3
The list of experiments designed for PZ3. Q lists the questions to be answered by each experiment. Dataset shows the benchmarks on which the certain
experiment is based. Sect. reports the subsection where the details of the certain experiment are demonstrated. #Core enumerates the number(s) of cores
specified for the parallel solver.

Task Q Dataset Sect. #Core

compare the performances of PZ3 and Z3 1, 2 QF_UF in SMT-LIB 7.3 2–12
evaluate the parallel efficiency of PZ3 over Z3 2 random problems 7.4 4
compare the performances of PZ3, PZ3oc and Z3 3 QF_UF in SMT-LIB 7.5 2, 4, 8
time profiling for PZ3 4 QF_UF in SMT-LIB 7.6 2, 4, 8
compare the speed-up ratios of PZ3 and PCVC4 over their sequential solvers 5 QF_UF in SMT-LIB 7.7 4

functions. The parallelization is implemented using the POSIX threads library. The schematic overview of PZ3 is shown in
Fig. 4. The input formula φ is decomposed into k subformulae, then k cores are used if possible while each of them runs a
Z3 instance assigned with a subformula.2 Moreover, there is a coordinator thread that performs shared symbol reasoning,
including derivation of shared interpretation and checking for interpretation combinability. The coordinator blocks all other
threads when it is working, thus it can either work on a standalone core (if available) or core i (1 ≤ i ≤ k).

The source code, documents and evaluation data are all publicly available at http://git.io/hpZg.

7.2. Experimental setup

The evaluation is conducted on a server under Ubuntu 16.04, using Intel(R) Xeon(R) CPU E5-2603v3@1.60GHz (with 12
cores) and 96GB memory. We assess PZ3 by answering the following research questions:

1. Can PZ3 outperform its baseline Z3?
2. How does the parallel efficiency vary with (a) the number of cores, (b) the problem structure?
3. Where does the speed-up of PZ3 come from?
4. How are PZ3’s time costs distributed to working phases and operations?
5. How effective is LDC compared to other parallelization approaches?

To answer the questions above, 5 experiments are designed as listed in Table 3. The first experiment compares the
performances of PZ3 and its baseline Z3 using different numbers of cores to evaluate PZ3’s speed-up over Z3 and its
scalability. The second one is to measure PZ3’s parallel efficiency on a set of randomly generated problems in order to
validate our hypothesis on the relationship between problem structure and PZ3’s parallel efficiency. In the third experiment,
we assess how (1) parallelism and (2) algorithmic effect (i.e. workload reduction by lazy decomposition and conciliation)
contribute to PZ3’s speed-up by running a special version of PZ3 (namely PZ3oc) with all its threads specified to a single
core, along with the normal PZ3 and Z3. The fourth experiment runs time profiling for PZ3. In the final experiment, we
choose PCVC4, a parallel solver of CVC4 [15] as the representative of portfolio-based solver to compare LDC with, as the
portfolio approach [33] is the state-of-the-art.

All the experiments except the second one are based on the QF_UF benchmarks of SMT-LIB.3 The benchmark problems
are originated from three application domains:

1. minimum transitivity constraints (MTC): 100 hierarchical problems containing contradictory cycles [34];
2. automatic theorem proving (ATP): problems obtained by trying to find a finite model of first-order formulae. There are

3 subcategories: SEQ, PEQ and NEQ with respective 56, 47, 48 problems.
3. quasigroup (QG): problems in loop theory and quasigroup theory [35]. There are 4 subcategories: loops6, QG5, QG6 and

QG7 with respective 448, 5286, 244, 418 problems.

Details on the randomly generated problems for the second experiment are demonstrated in Section 7.4. In experiments,
the timeout for each problem is set as 600 s by default.

7.3. Evaluation of parallel efficiency

Basic concepts. The parallel efficiency of PZ3 is defined as:

η = Tseq

Tpar · n

2 In the rest of paper, the statement that PZ3 works using k cores implies that the input formula is decomposed into k subformulae if possible.
3 http://smt-lib.org.

http://git.io/hpZg
http://smt-lib.org

144 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Table 4
The average time costs of Z3 (as the column “1” shows) and PZ3 using k cores (2 ≤ k ≤ 12, as the columns “2”, . . . , “12” show) in various categories of the
QF_UF benchmarks.

category � average time (s)

1 2 3 4 5 6 7 8 9 10 11 12

MTC 100 478.79 484.92 484.58 205.28 112.29 37.49 9.07 5.81 5.13 5.84 6.88 8.21
NEQ 48 47.36 46.94 51.82 64.91 47.91 55.32 68.18 66.30 50.64 49.75 72.38 75.83
PEQ 47 174.10 176.73 189.49 195.67 207.11 212.45 240.30 229.21 207.61 198.57 201.47 192.42
SEQ 56 29.79 32.62 55.60 56.32 79.01 84.92 95.25 115.77 103.91 79.60 76.92 92.25
loops6 448 0.26 0.53 0.67 0.55 0.55 0.60 0.61 0.70 1.04 1.10 1.40 1.74
QG5 5286 0.93 0.65 0.79 0.66 0.68 0.78 0.91 0.86 0.73 0.80 0.86 0.88
QG6 244 8.88 6.30 8.39 5.66 5.53 5.92 6.43 5.58 5.81 6.06 6.36 7.80
QG7 418 9.67 5.67 8.70 8.88 9.12 8.76 8.75 9.89 9.35 8.97 10.27 11.01

Table 5
The numbers of the solved problems by Z3 (as the column “1” shows) and PZ3 using k cores (2 ≤ k ≤ 12, as the columns “2”, . . . , “12” show) in various
categories of the QF_UF benchmarks.

category � #solved instance

1 2 3 4 5 6 7 8 9 10 11 12

MTC 100 21 20 20 72 88 100 100 100 100 100 100 100
NEQ 48 47 47 45 45 45 45 43 45 45 45 45 43
PEQ 47 37 36 35 33 33 31 30 31 32 33 33 33
SEQ 56 55 55 52 51 50 50 49 48 49 49 49 48
loops6 448 448 448 448 448 448 448 448 448 448 448 448 448
QG5 5286 5286 5286 5286 5286 5286 5286 5286 5286 5286 5286 5286 5286
QG6 244 244 244 244 244 244 244 244 244 244 244 244 244
QG7 418 418 418 418 418 418 418 418 418 418 418 418 418

where n is the number of cores in use, Tseq and Tpar refer to the solving time of Z3 and PZ3, respectively. The perfect

parallelization has η = 1. If η <
1

n
, Z3 outperforms PZ3. The speed-up is super-linear if η > 1. Thus, PZ3 has good scalability

if η keeps to be near 1.0 as the number of cores increases. The speed-up ratio of PZ3 is defined as
Tseq

Tpar
which does not

take the number of cores into consideration.
On the set of problems X , the parallel efficiency of PZ3 is computed by:

η =

∑
φ∈X ′

T φ
seq

n
∑

φ∈X ′
T φ

par

where X ′ ⊆ X excludes problems on which both solvers run out of time (because it is indeterminable which solver is
advantageous). T φ

seq and T φ
par denote the time costs of Z3 and PZ3 on the problem φ, respectively.

Experimental design. We run PZ3 and Z3 on the QF_UF benchmarks while PZ3 is configured to use 2–12 cores. To answer
Question 1, we compare the time costs of PZ3 and Z3 on the benchmark problems. To answer Question 2 (a), we analyze
how PZ3’s parallel efficiency changes as the number of cores in use increases.

Results and discussion. Table 4 and Table 5 show the comparison results on the solving time and the number of solved
problems, respectively. Furthermore, we use scatter plots in logarithmic scale shown in Fig. 5 to illustrate the detailed
comparison results in three problem categories.

MTC: PZ3 shows significant superiority in this category using k (k ≥ 4) cores. Z3 can only solve 21 problems while PZ3
can solve all 100 problems when k ≥ 6. In particular, when k = 9, PZ3 uses only 5.13 s on each problem averagely. When
k = 2, 3, PZ3 fails to outperform Z3 because subformulae are still difficult to be solved. Fig. 5 also shows that for the
problems solved by Z3 within 1 s, PZ3 generally takes more time. This is because they have low problem complexities and
thus PZ3 can hardly benefit from decomposition on them.

ATP: In general, PZ3 is disadvantageous in this category as Z3 outperforms PZ3 on both the solving time and the number of
solved problems. However, Fig. 5 shows that PZ3 has better performance than Z3 on a large portion of problems which are
difficult for Z3 (more specifically, with more than 104s of time cost).

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 145
Fig. 5. Comparison of PZ3 and Z3 on the QF_UF benchmarks in terms of runtime. For each scatter plot, the x-axis and y-axis denote the time costs (in
milliseconds) of PZ3 and Z3, respectively. The caption of each scatter plot reports the problem category and the number of cores in use.

Table 6
The ratio of problems on which PZ3 achieves speed-up, with respect to the number of cores.

#core 2 3 4 5 6 7 8 9 10 11 12

ratio 0.567 0.383 0.532 0.507 0.397 0.393 0.376 0.459 0.392 0.394 0.388

QG: Table 5 shows that both PZ3 and Z3 are capable to solve all the problems in this category. On the one hand, PZ3 is
disadvantageous in the loops6 subcategory because the majority of its problems (332 out of 448) can be solved by Z3 within
300 ms while PZ3 has inherent overhead on decomposition and thread manipulation. On the other hand, PZ3 is generally
more efficient in the QG5-QG7 subcategories. Furthermore, Fig. 5 also shows that PZ3 has an advantage on the problems
difficult for Z3 (requiring more than 104s).

Table 6 lists the ratio of problems on which PZ3 has improved performance, with respect to the number of cores. Prob-
lems solved within 300 ms by both PZ3 and Z3 are not included because their differences can be substantially influenced

146 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Fig. 6. The scalability of PZ3 in various categories of the QF_UF benchmarks.

by random errors in timing. The results show that PZ3 succeeds in achieving speed-up on more than one half of problems
when the number of cores in use is 2, 4 or 5. Under other core configurations, the ratio ranges from 0.376 to 0.459.

Fig. 6 shows the parallel efficiency of PZ3 across 2–12 cores. The black base line illustrates the parallel efficiency
1

n
denoting that the time costs of PZ3 and Z3 are the same with respect to the number of cores n. Overall, PZ3 has super-linear
speed-up in the MTC category and generally outperforms Z3 in subcategories QG5-7 (shown in solid lines). However, PZ3 is
disadvantageous in other subcategories (shown in dashed lines). In general, the parallel efficiency decreases as n grows when
n is sufficiently large. This can be explained as follows. First, larger n makes shared symbol reasoning more time-expensive
in checking interpretation combinability and refining shared interpretation while shared symbol reasoning contributes to the
unparallelized part of PZ3’s execution. Second, larger n leads to a larger portion of shared symbols, thus more conciliation
iterations are generally required. However, we also notice that, when 4 ≤ n ≤ 8, the parallel efficiency increases as n grows
in the MTC category. This is because the difficulties of subproblems are substantially reduced compared to the original
problem as the decomposition becomes more fine-grained.

Summary. For Question 1, PZ3 generally outperforms Z3 in 4 out of 8 subcategories of the QF_UF benchmarks. In par-
ticular, PZ3 is orders of magnitude faster than Z3 in the MTC category. For Question 2 (a), the parallel efficiency of PZ3
typically decreases as the number of cores grows. However, for problems with sparse structures such as problems in the
MTC category, PZ3 can benefit from the extra cores when the number of cores is small.

Admittedly, PZ3 cannot outperform Z3 on all kinds of problems. However, in practice, one can always build a portfolio
solver with one PZ3 instance and one Z3 instance. Two solver instances work on the input problem independently and
the portfolio solver terminates once any solver instance terminates. Thus, the portfolio solver can take the advantage of
PZ3 while preserving Z3’s performance in the worst case. Furthermore, one can also measure the sparseness of the input
formula (Section 7.4) to choose the appropriate solver favorable to the certain problem.

7.4. Speed-up and formula sparseness

Basic concepts. We have an important observation from the experimental results in the previous subsection: PZ3 tends to
have an advantage on problems with sparse structure (e.g. problems in the MTC category). Intuitively, a formula is sparse if,
for its two arbitrary clauses, few symbols are shared. First of all, the term “sparse” needs to be defined formally.

Definition 8 (Equality graph). Let φ be a TE-formula without uninterpreted functions and Eφ be φ’s literal set consisting of
equalities and inequalities. The undirected graph GE

φ = (V E
φ , EE

φ) is the equality graph of φ where V E
φ is the set of constants

in φ and EE
φ = {(vi, v j) | vi, v j ∈ V E

φ , (vi = v j), (v j = vi), (vi �= v j) or (v j �= vi) is in Eφ}.

Note that the concept of equality graph here is different from the concept with the same name in [34] because φ is not
required to be in NNF and we do not distinguish equality and inequality as two kinds of edges. If φ contains uninterpreted
functions, we use Ackermann’s reduction [36] to convert φ to an equi-satisfiable TE-formula φ′ with uninterpreted functions
reduced, then we have GE

φ = GE
φ′ .

Definition 9 (Constant sparseness). Let φ be a TE-formula in CNF: φ1 ∧ · · · ∧ φk . φ contains no uninterpreted functions and is
simplified such that a clause does not contain multiple duplicated literals, or a literal and its negation simultaneously. The
constant sparseness γφ of φ is defined as follows:

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 147
Fig. 7. The sparseness distribution of the QF_UF benchmarks from SMT-LIB.

γφ = |V E
φ | − V min

V max − V min

where V max = 2
∑

1≤i≤k
|Eφi | and V min =

⎡
⎢⎢⎢⎢

1 +
√

1 + 8|EE
φ |

2

⎤
⎥⎥⎥⎥.

Since φ contains N = ∑
1≤i≤k

|Eφi | literals in total, then φ could contain at most 2N constants. Let M be the number of

constants in GE
φ , then we have

M(M − 1)

2
≥ |EE

φ | where
M(M − 1)

2
is the largest number of different equalities over M

constants. Thus V min is the minimum number of constants possible for GE
φ .

We have γφ ∈ [0, 1]. When γφ is near 0, clauses share a large portion of symbols in �φ and thus PZ3 is probably
disadvantageous because the search space of shared interpretations can be hardly reduced compared to the interpretation
space of the original problem. When γφ is near 1, it is easier for PZ3 to find a decomposition with few shared symbols and
thus the conciliation step can terminate fast.

Definition 10 (Equality sparseness). Let φ be a TE-formula in CNF: φ1 ∧ · · · ∧ φk . φ contains no uninterpreted functions and
is simplified. The equality sparseness δφ of φ is defined as follows:

δφ = |EE
φ | − Emin

Emax − Emin

where Emax = ∑
1≤i≤k

|Eφi | and Emin = max
1≤i≤k

|Eφi |.

Also, we have δφ ∈ [0, 1]. When δφ is near 0, φ can probably be more efficiently solved by Z3 because it is easier for a
lazy solver to perform theory propagation and clause learning by deciding truth values of some literals. When δφ is near 1,
however, the solver has to traverse the whole interpretation space while theory propagation and clause learning are not
effective.

Fig. 7 is a scatter plot showing the distribution of the problems in the QF_UF benchmarks for the two sparseness
metrics. The x-axis refers to constant sparseness and it is in logarithmic scale. The y-axis refers to equality sparseness and
it is linear.

MTC: Problems have large constant and equality sparseness. PZ3 can efficiently solve the most of them with decompositions
with few shared symbols. Moreover, Z3 is inefficient on MTC problems because they are unsatisfiable problems with large
equality sparseness, thus Z3 has to traverse exponential number of candidate interpretations while theory propagation and
clause learning are not effective.

ATP and QG: Problems have generally low constant sparseness. This is because Ackermann’s reduction introduces auxil-
iary constants along with additional constraints of function congruence for a large number of applications of uninterpreted
functions, and thus the equality graph becomes dense. A possible explanation for the fact that PZ3 cannot substantially out-
perform Z3 on these problems is that the decomposition contains a large portion of shared symbols, thus more conciliation
iterations are generally required to find a witness of global satisfiability or the inconsistency over the shared symbols. It
is noteworthy that there are many factors that can influence PZ3’s performance in addition to the sparseness, thus a large
portion of QG problems can still be favorable to PZ3 (and we will give an explanation in Section 7.5).

148 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Fig. 8. The distribution of parallel efficiency over two sparseness metrics on the randomly generated problems. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Experimental design. Our hypothesis is that for a TE-formula φ, PZ3 has more chance to outperform Z3 as γφ and δφ

increase. To validate this hypothesis, we compare the performances of PZ3 (using 4 cores) and Z3 on a set of randomly
generated problems with different sparseness values while other factors that could influence the solver’s performance are
carefully controlled. A generated problem is in CNF with Nv constants, no uninterpreted functions and Nc clauses, each
clause consists of Nl different literals. Problem generation is parametric as Nc , Nl , γφ and δφ need to be specified. In
our experiment we have Nc = 3000 and Nl = 3. γφ = 5 × 10−i where i is uniformly distributed over [1, 4] and δφ is
uniformly distributed over [0, 1]. The problem generator constructs an equality graph GE

φ by the given Nc , Nl , γφ and δφ ,
then distributes (in)equalities represented by edges in EE

φ to the clauses. We generate totally 3600 random problems for
evaluation.

Results and discussion. Fig. 8 is a heat map visualizing PZ3’s parallel efficiency with respect to two sparseness metrics.
For better visualization, we choose 96 cluster centers and then assign each problem to the nearest cluster center, next we
compute the parallel efficiency for problems assigned to each cluster center. The coordinate of each cluster center is(

5 × 10

(
2k+1

8 −4
)
,

2l + 1

16

)
where k = 0 . . . 11 and l = 0 . . . 7

In Fig. 8, a block is used to represent the problems assigned to the certain cluster center while its color represents PZ3’s
parallel efficiency on these problems. As the constant sparseness increases, PZ3 generally has better parallel efficiency be-
cause PZ3 can take advantage of decompositions with few shared constants. The color of block is closer to red as the
equality sparseness decreases. This is mainly because the problems with smaller equality sparseness are more favorable to
Z3 by taking advantage of theory propagation and clause learning. Moreover, it can be observed that PZ3 can achieve super-
linear speed-up on problems with large equality and constant sparseness. All in all, the visualization results substantiate
our hypothesis.

Summary. Given a TE-formula φ, PZ3 has more chance to solve it faster than Z3 when φ has larger constant and equality
sparseness.

Sparse problems are of practical concern. The majority of real-world software/hardware systems are organized in a
modular manner. Modules are loosely-coupled as they interact with each other by sharing a few variables/signals. Thus
a verification task on a real-world system, which is not feasible for existing sequential SMT solvers, is favorable to LDC
because the inter-module logic can be handled efficiently via conciliation.

7.5. Speed-up factor analysis

Basic concepts. The speed-up of PZ3 has two main sources: (1) parallelism and (2) the algorithmic effect of LDC. To quantify
the contributions of these two sources, we run (1) Z3, (2) PZ3 with all the threads assigned to separated cores, and (3) PZ3oc

with all the threads assigned to a single core on the same benchmarks and compare their performances. Let T1, T2, T3

be the time costs of Z3, PZ3 and PZ3oc on the problem φ, respectively. Without regarding inherent overhead in thread
manipulation, we have

T3 = λ · T1

where λ is the workload ratio on φ. If λ > 1, solving φ by LDC has more workload than solving φ directly, and vice versa
otherwise. We also have

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 149
Table 7
The comparison results of Z3, PZ3 and PZ3oc on the QF_UF benchmarks. WR and CPE refer to workload ratio and canonical parallel efficiency, respectively.

#core MTC ATP QG

average time (s) WR CPE average time (s) WR CPE average time (s) WR CPE

Z3 PZ3 PZ3oc Z3 PZ3 PZ3oc Z3 PZ3 PZ3oc

2 8.468 24.596 30.152 3.561 0.613 35.486 33.232 42.308 1.192 0.637 1.762 1.186 1.485 0.843 0.626
4 22.790 0.733 0.841 0.037 0.287 25.278 17.705 30.978 1.225 0.437 1.771 1.375 2.119 1.196 0.385
8 22.790 3.008 3.165 0.139 0.132 31.651 30.561 50.622 1.599 0.207 1.787 1.558 2.712 1.518 0.218

Fig. 9. Bases for PZ3’s time profiling with respect to working phases, LDC interfaces and basic operations from rows 1–3. CSI, CI and RSI are the
abbreviations of ComputeSharedInterp, CombineInterp and RefineSharedInterp, respectively. Alignments of columns across the rows visualize
the relationship of the profiling bases.

ηc = T3

T2 · n

where n is the number of cores in use and ηc denotes canonical parallel efficiency, which is different from the previously
defined parallel efficiency η as two time values to be compared are based on the same workload. Then, we have

η = T1

T2 · n
= ηc

λ

where ηc and λ measure the contributions of parallelism and the algorithmic effect, respectively. We say parallelism con-

tributes more to the speed-up of PZ3 if
1

ηc
< λ holds, while algorithmic effect contributes more if

1

ηc
> λ.

Experimental design. We compare the performances of Z3, PZ3 and PZ3oc on the QF_UF benchmarks using 2, 4, 8 cores.
When n cores are in use, the timeout for PZ3oc is set to 600n seconds. To precisely approximate workload of LDC-based
solving, only problems on which none of three solvers run out of time are included in speed-up factor analysis.

Results and discussion. Table 7 summarizes the comparison results in different problem categories.

MTC: PZ3 has a significant speed-up over Z3 when the number of cores is 4 or 8, and algorithmic effect is the dominant
factor contributing to the speed-up. This is because (1) subproblems are much easier to be solved than the whole problem,
and (2) few symbols are shared over subproblems, thus the conciliation step is generally efficient.

ATP: PZ3 outperforms Z3 on every core configuration, and parallelism contributes more to the speed-up as LDC has more
workload than direct SMT solving.

QG: Algorithmic effect of LDC has more influence on the speed-up when using 2 cores because for a large portion of
problems, the unsatisfiability is derived directly from the unsatisfiability of a subproblem (see Table 8 for details). When the
number of cores is 4 or 8, however, the speed-up is mainly contributed to by parallelism.

Table 7 also shows that in each category, the canonical parallel efficiency decreases as the number of cores grows,
which implies that more time is wasted by idle threads. There are two main sources of thread idleness. First, workloads
for subproblems are probably unbalanced since our decomposition is an approximate solution that minimizes the number
of shared symbols, while balancing of subproblem complexity is not considered. Second, the coordinator contributes to the
unparallelized part of PZ3’s execution, as it blocks all other threads when performing shared symbol reasoning.

Summary. In the MTC category, algorithmic effect plays the dominant role in the speed-up of PZ3 as the decomposition
substantially reduces the complexity of input problem. In the QG category, algorithmic effect contributes more to PZ3’s
speed-up because of the unsatisfiability of subproblems. In other cases, parallelism has more influences on PZ3’s speed-up.

7.6. Profiling analysis

Basic concepts. There are several bases for profiling PZ3, as Fig. 9 shows. Since the LDC algorithm (Algorithm 1) can
be roughly divided into three major working phases: decomposition (line 2), subproblem solving (lines 3–6, 10–14) and
shared symbol reasoning (lines 7–8, 15–21), PZ3’s wall time can be profiled with respect to these phases. The last 2

150 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Table 8
The average wall time percentage of each working phase when 2/4/8 cores are in use on the QF_UF benchmarks. DC, SUB and SSR refer to decomposition,
subproblem solving and shared symbol reasoning, respectively. #NC refers to the number of problems without conciliation. For each core number, the first
(second) row reports the average wall time percentage with NC problems included (excluded).

#core MTC (%) ATP (%) QG (%)

DC SUB SSR #NC DC SUB SSR #NC DC SUB SSR #NC

2 1.05 91.64 7.32 1 2.81 96.96 2.32 126 15.83 81.67 2.49 3783
0.78 91.51 7.7 3.47 93.86 2.66 17.06 76.83 6.11

4 0.53 96.35 3.12 1 4.53 92.98 2.49 84 15.09 82.21 2.69 3622
0.49 96.35 3.16 3.45 89.3 7.24 13.45 80.23 6.31

8 0.89 95.14 3.97 1 9.09 88.85 2.06 86 17.31 79.15 3.54 2605
0.77 95.21 4.01 4.28 87.75 7.98 14.82 79.02 6.16

Table 9
The average percentage of actual CPU time of each LDC interface and basic operation when 2/4/8 cores are in use on the QF_UF benchmarks. DC, FM, SC,
IE, SSR refer to decomposition, formulation, satisfiability checking, interpolant extraction and shared symbol reasoning, respectively. Slv and Itp refer to
Solve and Interpolate, respectively. For each core number, the first (second) row reports the average percentage of actual CPU time with the problems
without conciliation included (excluded).

#core MTC (%) ATP (%) QG (%)

DC FM
SC

Slv

IE

Itp
SSR DC FM

SC

Slv

IE

Itp
SSR DC FM

SC

Slv

IE

Itp
SSR

2 4.35 0.00
54.44

28.95

37.30

62.80
3.90 9.88 0.06

88.04

84.46

1.86

5.44
0.16 47.27 0.03

50.70

40.74

1.07

11.03
0.93

4.20 0.00
52.31

25.40

39.37

66.29
4.12 10.33 0.69

65.72

24.54

21.41

62.59
1.85 48.01 0.06

47.02

22.63

2.63

27.01
2.29

4 0.50 0.85
65.30

5.65

32.22

91.87
1.13 13.40 0.06

83.90

54.35

1.62

31.17
1.03 34.89 0.06

62.18

35.77

1.48

27.88
1.40

0.45 0.86
64.86

4.38

32.68

93.16
1.15 3.63 0.17

88.70

4.86

4.59

88.42
2.92 19.76 0.15

73.13

9.17

3.57

67.53
3.39

8 1.03 0.26
91.68

5.14

6.42

92.96
0.61 21.27 0.03

77.51

54.65

0.69

23.55
0.50 21.50 0.04

77.48

30.13

0.34

47.69
0.64

0.95 0.27
91.68

4.26

6.48

93.90
0.61 1.93 0.12

93.27

3.33

2.70

92.64
1.98 9.03 0.07

89.18

6.59

0.60

83.19
1.12

rows in Fig. 9 provide two profiling bases in terms of actual CPU time which excludes the CPU time wasted by thread
idleness. They are based on LDC interfaces and basic operations, respectively. The actual CPU time for the conciliation
step is roughly the summation of that of Interpolate, Formulate, ComputeSharedInterp, CombineInterp
and RefineSharedInterp. The LDC procedure roughly consists of 5 kinds of basic operations: decomposition, satisfi-
ability checking, interpolant extraction, formulation and shared symbol reasoning. It is noteworthy that the procedure of
Interpolate consists of satisfiability checking and optional interpolant extraction depending on whether the prior check-
ing result is unsatisfiable.

Experimental design. We prepare two special versions of PZ3 for profiling analysis: one outputs wall time for each working
phase while another outputs actual CPU time for each LDC interface and basic operation. The experiments are conducted on
the QF_UF benchmarks using 2, 4 and 8 cores.

Results and discussion. Table 8 and Table 9 report the profiling results in terms of wall time and actual CPU time, re-
spectively. Only the problems upon which PZ3 terminates within the default timeout (600 s) are included in the profiling
analysis. The percentages of wall time for each working phase and actual CPU time for each LDC interface and basic oper-
ation are computed for each problem, and the average percentages over each problem category are included in the tables.
The reason is that the problems with large time costs should be prevented from substantially influencing the profiling re-
sults. Fig. 10 illustrates the distribution of actual CPU time for each LDC interface and basic operation over the problems
with conciliations. Note that the problems without conciliation (i.e. NC problems) are excluded because they could bring
biases to the distribution results.

In the most cases (except the case in the QG category when 2 cores are used), Interpolate makes a dominant con-
tribution to the total actual CPU time, which is consistent with the observation from Table 8 that subproblem solving is
the most time-expensive working phase and also implies that the conciliation step is the main bottleneck of PZ3’s perfor-
mance. As the number of cores grows, Interpolate generally takes an increasing percentage of actual CPU time because
more conciliation iterations are generally required as the number of shared symbols increases. It is noteworthy that satis-
fiability checking plays a crucial role in Interpolate based on the comparison results between the time percentages of

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 151
Fig. 10. The distribution of the average percentages of actual CPU time for LDC interfaces and basic operations. DC, FM, SC, IE, SSR refer to decomposition,
formulation, satisfiability checking, interpolant extraction and shared symbol reasoning, respectively. Solve and Interpolate are denoted by Solve and
Interp, respectively. The caption of each sub-plot reports the problem category and the number of cores in use.

Interpolate and interpolant extraction in Table 9. This is because an interpolant extraction is not performed when the
prior satisfiability check returns a satisfiable result.

From the perspective of basic operations, satisfiability checking is generally the most time-consuming. Fig. 10 shows that
when the number of cores grows, the average time percentage of Solve decreases while the average time percentage of
satisfiability checking increases. This is because a more fine-grained decomposition (1) reduces the difficulties of subprob-
lems; (2) leads to more conciliation iterations and thus a larger number of satisfiability checking operations, as the number
of shared symbols possibly increases. In general, decomposition has low runtime overhead. The time cost of decomposition
has connections with the number of clauses N in the input problem and the size of decomposition k, as (1) clause graph
construction has the worst-case time complexity O(N2), and (2) extracting k subproblems has the worst-case time complex-
ity O(kN2), based on the discussion in Section 5.1. In the QG category, decomposition is substantially more time-consuming
because a large portion of QG problems contain an extensive number of clauses. The profiling results also show that shared
symbol reasoning and formulation have limited contributions to the total actual CPU time, and their time percentages have
no strong associations with the number of cores in use.

152 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Table 10
The design of PCVC4’s portfolio. The last four options have no values, thus we use ✓ or ✗ to denote whether a solver instance (core) has the certain flag
set or not.

Options Details core 0 core 1 core 2 core 3

--random-freq frequency of random decisions 0.5 0.0 0.0 0.0
--random-seed random seed 20 30 40 50
--restart-int-base base restart interval 25 25 50 25
--restart-int-inc restart interval increase factor 3.0 3.0 3.0 5.0

--condense-function-values condense models for functions rather than explicitly
representing them

✓ ✗ ✗ ✗

--symmetry-breaker use UF symmetry breaker [37] ✗ ✓ ✗ ✗

--uf-ss-eager-split add splits eagerly for UF strong solver ✗ ✗ ✓ ✗

--uf-ss-simple-cliques always use simple clique lemmas for UF strong solver ✗ ✗ ✗ ✓

By comparing the profiling results on wall time (Table 8) and actual CPU time (Table 9), it can be observed that for
the decomposition operation, its wall time ratio is generally lower than its ratio of actual CPU time. This is because the
workloads of decomposition are well balanced over each working thread. Nevertheless, since the workloads of shared symbol
reasoning are always assigned to the coordinator thread only while other threads are blocked, the wall time ratio of shared
symbol reasoning is substantially higher than the corresponding ratio of actual CPU time.

Summary. PZ3’s wall time is mostly contributed to by the subproblem solving phase. In terms of actual CPU time,
Interpolate is the main contributor in the LDC interfaces while satisfiability checking is the main contributor in 5
kinds of basic operations.

7.7. Comparison with the portfolio approach

Basic concepts. The state-of-the-art technique for parallel SMT solving is the portfolio approach [33]. A portfolio is a set of
solvers with different heuristics, and their combination represents a set of orthogonal yet complementary strategies. Each
solver instance handles the input problem separately and its derived lemmas are shared with other solver instances. Lemma
sharing could drastically improve the performance of the solver portfolio over its individual components. In what follows,
we compare our approach with the portfolio approach.

Experimental design. Since CVC4 [15] has an implementation of portfolio-based parallel SMT solver named PCVC4 as the
competition contribution for SMT-COMP, we compare PZ3’s parallel efficiency with PCVC4’s using 4 cores on the QF_UF
benchmarks. Table 10 summarizes the design of the PCVC4’s portfolio. Solver instances (cores) have orthogonal configu-
rations on random seed, random decision, restart policy and options related to uninterpreted functions (rows 6–9). The
optimal portfolio is tuned by some pilot experiments. The maximum size of shared lemma is set to 8, which is consistent
with the clause sharing policy employed by ManySAT [38].

Results and discussion. Fig. 11b shows the overall comparison between PCVC4 and CVC4. On the one hand, PCVC4 fails to
outperform CVC4 on a large portion of problems because (1) they have negligible benefits from the portfolio and lemma
sharing, and (2) lemma sharing introduces overhead by inter-thread communications. On the other hand, PCVC4 has good
performance stability, as it would not be much slower than CVC4 in the worst case. This is because the workload of each
solver instance consists of solving the input problem and lemma sharing, while the latter has much less time cost than the
former in the most cases.

The comparison results between PZ3 and PCVC4 are illustrated in Fig. 11. Overall, PZ3’s speed-up ratio and PCVC4’s are
1.593 and 0.978, respectively. To guarantee the fairness of comparison, we (1) exclude the problems in the MTC category
because CVC4 can efficiently solve them by exploiting property of contradictory cycle [34]; (2) omit the problems solved
within 300 ms by both sequential and parallel solvers. Then the results show that (1) PZ3 succeeds in accelerating the
solutions of 1726 out of 3265 (52.9%) problems while PCVC4 accelerates the solutions of 450 out of 2267 (19.9%) problems;
(2) PZ3’s speed-up ratio and PCVC4’s are 0.9822 and 0.9820, respectively. Therefore, PZ3 has slightly better speed-up ratio
and is capable to accelerate the solutions of a substantially larger portion of problems than PCVC4.

Summary. Overall, PZ3 achieves better speed-up on the QF_UF benchmarks. After excluding some problems that may
hinder the fairness of comparison, two parallel solvers have almost the same speed-up ratios while PZ3 can accelerate the
solutions of a larger portion of problems.

8. Related work

SMT typically benefits from advances in SAT. There are generally four kinds of approaches for parallelizing SAT solv-
ing. The first is the guiding-path approach which parallelizes search in problem space based on dynamic space division.

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 153
Fig. 11. Comparison of different parallelization approaches. The left scatter plot illustrates the speed-up of PZ3 over Z3, while the right one illustrates the
speed-up of PCVC4 over CVC4.

Related solvers include PSATO [39], Treengeling [40], etc. The main drawbacks of this approach are twofold. First, for a
given SAT problem with hundreds of thousands of variables, it is very difficult to find the most relevant variable set for
space partitioning. Second, it is challenging to partition problem space on the theory level, which is desired for lazy SMT
solvers. The second is the portfolio approach, which parallelizes a solver by running multiple solver instances with differ-
ent heuristics. Each solver instance handles the whole input problem separately while duplicated search is prevented by
lemma sharing [41]. Solvers such as ManySAT [38], Plingeling [40] are based on this approach. Generally speaking, the
portfolio approach is robust to various kinds of problems which are sensitive to heuristics. However, it cannot handle the
problems surpassing the capability of a single solver, and a good portfolio requires elaborated parameter tuning. The third
approach parallelizes unit propagation which is reported to typically take up over 80% of solving time. Riss [42] is a typ-
ical solver of this genre. This approach makes multiple decisions concurrently but handles conflicts sequentially. Empirical
results show that achieved performance gains are limited because of insufficient implications and performance bottleneck
on the shared clause database. The last one is the decomposition-based approach which is quite similar with LDC. This
approach firstly divides the input formula into subformulae, and then conciliates interpretations of shared variables through
Craig interpolation [43,44]. To the best of our knowledge, the existing decomposition-based approaches are all based on
propositional logic and miss necessary mechanisms for reasoning in the theory level, such as interpretation combinability
check for uninterpreted functions and refinement of interpretations for shared uninterpreted function symbols.

There are few known work on parallelizing SMT solving directly on the level of theory reasoning. Wintersteiger et al.
integrate portfolio approach with lemma sharing to Z3 and the parallel solver achieves speed-up on the QF_IDL (quantifier-
free fragment of integer differential logic) benchmarks from SMT-LIB [33]. Portfolio-based SMT solvers also suffer from the
limitations of portfolio-based SAT solvers.

LDC is essentially inspired by counterexample guided abstraction refinement (CEGAR) [45–48] in program verification.
Abstraction is a key to verify industrial programs as it substantially reduces the state space by removing or simplifying
details irrelevant to properties to be checked. However, the information loss incurred in abstraction potentially leads to
wrong results such as spurious counterexamples (an execution path that leads to the state that violates the property to be
checked, but such path does not correspond to a concrete execution path). Therefore, designing abstraction is crucial and
requires considerable creativity and insights. CEGAR generates an initial abstraction and refines it iteratively by analyzing the
spurious counterexamples until the program is verified to be safe or a concrete counterexample is found. In [48], McMillan
introduces Craig interpolation to refine the predicate abstraction. In the context of LDC, the abstraction is the global invari-
ant, a spurious counterexample is a candidate shared interpretation inconsistent with subproblems and interpolants are used
to refine the abstraction. The conciliation step is a CEGAR loop which does not terminate until a concrete counterexample
(i.e. a witness of global satisfiability) is found, or no counterexamples exist (thus the input problem is unsatisfiable).

9. Conclusion and future work

In this paper, we propose a high-level and flexible framework namely lazy decomposition and conciliation (LDC) for
parallelizing SMT solving. An LDC based solver could be built upon an existing SMT solver without hacking its low-level
implementation. LDC is flexible for various underlying theories supporting quantifier-free interpolation. We have designed
a sound and complete instantiation of LDC in TE and implemented PZ3, a parallelized version of Z3. Evaluation results
substantiate the potential of LDC as PZ3 outperforms the sequential solver on a variety of random and benchmark problems.
In particular, PZ3 generally takes an advantage on problems with sparse structures and it could achieve orders of magnitude
speed-up over Z3 on these problems.

154 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Our proposed framework opens some interesting directions for future research. It is possible to develop a new de-
composition heuristic that takes subproblem complexity into consideration for better load balancing in parallel processing.
Furthermore, it is worth instantiating LDC in other theories such as arithmetic, bit-vector and even theory combinations
since they are relevant to many practical problems in verification and AI planning. Last but not the least, the implementa-
tion of LDC could be further optimized especially for dense problems. The work stealing mechanism could be integrated to
improve the parallel efficiency. Some refutation compression techniques [49–52] are potentially helpful for a more efficient
interpolant extraction.

Acknowledgements

This research is sponsored in part by National Natural Science Foundation of China (Grant Nos. 61402248, 61527812),
National Science and Technology Major Project of China (Grant No. 2016ZX01038101), and the National Key Research and
Development Program of China (Grant Nos. 2015BAG14B01-02, 2016QY07X1402).

Appendix A. Proofs for model isomorphism

Lemma 18. ∼= is an equivalence relation over M, where M is the set of all TE-interpretations.

Proof. We prove the reflexivity, symmetry and transitivity of ∼= on M.

Reflexivity: Let M = (D, (_)M) ∈ M, and h be the identity function on D. Then, for each constant symbol c ∈ � we have
h(cM) = cM ; for each n-ary (n > 0) function symbol f ∈ � and d1, . . . , dn ∈ D we have h(f M(d1, . . . , dn)) = f M(d1, . . . , dn).
Hence M ∼= M holds.

Symmetry: Let M1 = (D1, (_)M1) and M2 = (D2, (_)M2). If M1 ∼= M2 holds, there exists an isomorphism h : D1 → D2 of
M1 into M2. Since h is bijective, h−1 : D2 → D1 is also bijective. For each constant symbol c ∈ �, h−1(cM2) = cM1 holds.
Since h(f M1 (d1, . . . , dn)) = f M2 (h(d1), . . . , h(dn)) holds for each n-ary function symbol f ∈ � and d1, . . . , dn ∈ D1, we have
h−1(f M2 (d′

1, . . . , d
′
n)) = f M1 (h−1(d′

1), . . . , h
−1(d′

n)) where d′
1 = h(d1), . . . , d′

n = h(dn). Hence h−1 is also an isomorphism of
M2 into M1. M2 ∼= M1 holds.

Transitivity: Let M1 = (D1, (_)M1), M2 = (D2, (_)M2) and M3 = (D3, (_)M3). Since M1 ∼= M2 and M2 ∼= M3 hold, there exists
ha : D1 → D2 and hb : D2 → D3 be their isomorphisms respectively. Let h be hb ◦ ha and check if h is the isomorphism
of M1 into M3. First, h is bijective from D1 to D3. For each constant c ∈ �, we have h(cM1) = hb(cM2) = cM3 . For each
n-ary function f ∈ � and d1, . . . , dn ∈ D1, we have h(f M1 (d1, . . . , dn)) = hb(f M2 (ha(d1), . . . , ha(dn)) = f M3 (h(d1), . . . , h(dn).
Therefore we have M1 ∼= M3. �
Appendix B. Proofs for the soundness of LDC interfaces

B.1. Proof of Lemma 6

Proof. Let M be a TE-interpretation, the congruence relation R of which is presented with the partition below.

Sφ/R =
{
{t1

1, . . . , tk1
1 }, . . . , {t1

n, . . . , tkn
n }

}
Let F be the result of Formulate(M). F = C1 ∧ · · · ∧ Cn ∧ Cn+1, where

C1 : t1
1 = · · · = tk1

1
...

Cn : t1
n = · · · = tkn

n
Cn+1 : ∧

1�i< j�n
t1

i �= t1
j

First we prove the statement: F is satisfiable and there exists only one congruence relation R over S F that satisfies F .
Clearly, we have S F = Sφ . Also, it is trivial to verify that R satisfies F . Assume that there is another congruence relation R ′
(R ′ �= R) over S F such that R satisfies F . Without loss of generality, there exists two terms ta, tb ∈ S F such that ta =R tb and
ta �=R ′ tb . Thus, by F → (ta = tb) and (ta = tb)

R ′ = false, F is falsified by R ′ , which contradicts to the assumption.
For an arbitrary TE-formula ϕ ∈LM , if ϕM = true, we have (ϕ ∧ F)M = true, thus ϕ ∧ F is satisfiable. Suppose ϕM = false

and assume ϕ ∧ F is satisfiable, then there exists an interpretation M ′ |= (ϕ ∧ F). Since F M′ = true, thus M and M ′ associate
with the same congruence relation R over S F . However, ϕM′ = true �= ϕM , then there exists two terms tx, t y ∈ Sϕ such that
(tx = t y)

M′ �= (tx = t y)
M . Thus (1) either tx or t y cannot be interpreted by M , implying ϕ /∈ LM ; (2) otherwise (tx = t y)

M′ =
(tx = t y)

M , which contradicts to our assumption. �

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 155
B.2. Proof of Lemma 7

Proof. For the first statement, we define a mapping h : D → D′ where D and D′ are domains of M and M ′ , respectively,
such that

h(ν) =
{

μ ν is substituted by μ by unification rules
ν Otherwise

We wish to prove that h is bijective.
(1) Assume that there exists ν ∈ D such that h(ν) = μ1 and h(ν) = μ2 and μ1 �= μ2. Then there exists two terms t1, t2

such that tM
1 = tM

2 = ν , tMS
1 = μ1 and tMS

2 = μ2, where μ1 �= μ2. According to Algorithm 1, M |= (ψi ∧ F S) where M S � F S ,
then we have F M

S = true. By Lemma 3, F S → (t1 �= t2) holds, then (t1 �= t2)
M = true, which contradicts to tM

1 = tM
2 . Hence h

is a function.
(2) Analogously we can prove that there does not exist ν1, ν2 ∈D such that ν1 �= ν2 and h(ν1) = h(ν2), thus h is injective.

Also it is trivial that h is surjective.
By the Const-Sub and Func-Sub rules, h meets the conditions 2 and 3 in Definition 2, thus h is an isomorphism from M

into M ′ .
For the second statement, sufficiency and necessity are proved respectively.

Sufficiency:
(1) ν = νS , the conclusion is trivial.
(2) ν is substituted by applying either the Const-Sub rule or the Func-Sub rule. For the former case, there exists c ∈

(�M ∩ �MS) such that cM = ν and cMS = νS , thus ν ∼ νS . For the latter case, let M ′′ be the intermediate interpretation
derived from M where the certain Func-Sub rule for the n-ary (n > 0) function symbol f ∈ (�M ∩ �MS) is applicable,
such that f M′′

(ν1, . . . , νn) = ν , f MS (ν1, . . . , νn) = νS . Since M ′′ is derived from M with some symbols substituted, we have
f M(ν ′

1, . . . , ν
′
n) = ν where h(ν ′

i) = νi for each 1 ≤ i ≤ n. By the induction hypothesis, we have ν ′
i ∼ νi , thus ν ∼ νS holds.

Necessity:
(1) ν = νS , the conclusion is trivial.
(2) There exists c ∈ (�M ∩ �MS) such that cM = ν and cMS = νS , then ν is substituted by νS by the Const-Sub rule.
(3) There exists an n-ary (n > 0) function symbol f ∈ (�M ∩�MS) such that f M(ν1, . . . , νn) = ν and f MS (ν1S , . . . , νnS) =

νS where νi ∼ νi S for each 1 ≤ i ≤ n. By the induction hypothesis, we have h(νi) = νi S . Let M ′′ be the intermediate inter-
pretation derived from M with νi substituted by νi S (1 ≤ i ≤ n, and it is possible that νl = νlS for some 1 ≤ l ≤ n). Then, we
can apply the Func-Sub rule on M ′′ to yield a new interpretation M ′′′ = M ′′[νS/ν]. Hence, ν is substituted by νS in M ′ , and
thus h(ν) = νS . �
B.3. Proof of Lemma 8

Proof. It is trivial that all the function applications in F meet the conditions. Consider an arbitrary function application
(f , d) that meets the conditions. Let M ′

i and M ′
j be the result of Unify(Mi ,M S) and Unify(M j ,M S), respectively. By

Lemma 7, we have hi(νli) = νlS and h j(νl j) = νlS , where hi (resp. h j) is the isomorphism of Mi (resp. M j) into M ′
i (resp. M ′

j),
d = (ν1S , . . . , νnS), di = (ν1i, . . . , νni), d j = (ν1 j, . . . , νnj) and 1 ≤ l ≤ n. Since both f Mi (di) and f M j (d j) are defined, then
both f M′

i (d) and f M′
j (d) are also defined. Since f MS (d) is not defined, by Algorithm 4 we have (f , d) ∈ F . �

B.4. Proof of Lemma 9

Proof. Let M ′
i be the result of Unify(Mi ,M S) for each 1 ≤ i ≤ k.

Suppose CombineInterp returns true. Consider two arbitrary interpretations M ′
i, M

′
j (1 � i < j � k), an n-ary (n > 0)

function f ∈ �Mi ∩�M j and d ∈ (D′
i ∩D′

j)
n . If f M′

i (d) and f M′
j (d) are defined, f MS (d) is also defined. By the Func-Sub rule,

we have f M′
i (d) = f M′

j (d) = f MS (d). Also, for each constant symbol c ∈ �Mi ∩�M j , c
M′

i = cM′
j = cMS holds by the Const-Sub

rule. Thus, k interpretations M1, . . . , Mk are combinable under M S .

Suppose CombineInterp returns false, then there exists a function application (f , d) such that f M′
i (d) and f M′

j (d) are
defined but f MS (d) is not defined. f M′

i (d) corresponds to a term f (ti) which is a subterm of (ψi ∧ F S) in the congruence

closure, and we have tM′
i

i = d. Analogously there exists f (t j) which is a subterm of (ψ j ∧ F S) such that t
M′

j

j = d. Furthermore,
since elements in d are shared by M ′

i and M ′
j , the elements in the original domains Di and D j are substituted by applying

the Const-Sub or the Func-Sub rules. Thus, there exists (1) (ti1, . . . , tin)M′
i = d where each tix (1 � x � n) is built from

symbols in (�Mi ∩ �MS); (2) (t j1, . . . , t jn)
M′

j = d where each t jx (1 � x � n) is built from symbols in (�M j ∩ �MS).

156 X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157
Assume M1, . . . , Mk are combinable under M S , thus M1, . . . , Mk have isomorphic interpretations M ′′
1, . . . , M ′′

k respectively
that satisfy the condition (2) and (3) in Definition 6. By performing structural induction on term, we have

(ti1, . . . , tin)
M ′′

i = (ti1, . . . , tin)
MS = d

(t j1, . . . , t jn)
M ′′

j = (t j1, . . . , t jn)
MS = d

Also, the following two equations hold.

t
M ′

i
i = (ti1, . . . , tin)

M ′
i = d

t
M ′

j

j = (t j1, . . . , t jn)
M ′

j = d

Since Mi ∼= M ′
i (by Lemma 7) and Mi ∼= M ′′

i (by the assumption) hold, we have M ′
i
∼= M ′′

i . Similarly M ′
j
∼= M ′′

j holds. Thus we

have t
M′′

i
i = t

M′′
j

j = d, then f M′′
i (d) and f M′′

j (d) are both defined. However, f MS (d) is not defined, which contradicts to the
assumption. �
References

[1] S.O. Memik, F. Fallah, Accelerated SAT-based scheduling of control/data flow graphs, in: 20th International Conference on Computer Design, Proceedings,
ICCD 2002, VLSI in Computers and Processors, Freiburg, Germany, 16–18 September 2002, IEEE Computer Society, 2002, p. 395.

[2] G. Nam, K.A. Sakallah, R.A. Rutenbar, Satisfiability-based layout revisited: detailed routing of complex FPGAs via search-based boolean SAT, in: S. Kap-
tanoglu, S. Trimberger (Eds.), Proceedings of the 1999 ACM/SIGDA Seventh International Symposium on Field Programmable Gate Arrays, FPGA 1999,
Monterey, CA, USA, February 21–23, 1999, ACM, 1999, pp. 167–175.

[3] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, Y. Zhu, Symbolic model checking using SAT procedures instead of BDDs, in: M.J. Irwin (Ed.), Proceedings of
the 36th Conference on Design Automation, New Orleans, LA, USA, June 21–25, 1999, ACM Press, 1999, pp. 317–320.

[4] R.E. Bryant, S.M. German, M.N. Velev, Processor verification using efficient reductions of the logic of uninterpreted functions to propositional logic,
ACM Trans. Comput. Log. 2 (2001) 93–134.

[5] S.A. Cook, The complexity of theorem-proving procedures, in: M.A. Harrison, R.B. Banerji, J.D. Ullman (Eds.), Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, Shaker Heights, Ohio, USA, May 3–5, 1971, ACM, 1971, pp. 151–158.

[6] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: engineering an efficient SAT solver, in: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, June 18–22, 2001, ACM, 2001, pp. 530–535.

[7] N. Eén, N. Sörensson, An extensible SAT-solver, in: E. Giunchiglia, A. Tacchella (Eds.), Theory and Applications of Satisfiability Testing, 6th International
Conference, Selected Revised Papers, SAT 2003, Santa Margherita Ligure, Italy, May 5–8, 2003, in: Lect. Notes Comput. Sci., vol. 2919, Springer, 2003,
pp. 502–518.

[8] C.W. Barrett, R. Sebastiani, S.A. Seshia, C. Tinelli, Satisfiability modulo theories, in: Handbook of Satisfiability, in: Front. Artif. Intell. Appl., vol. 185,
2009, pp. 825–885.

[9] S.K. Lahiri, S.A. Seshia, The UCLID decision procedure, in: Computer Aided Verification, 16th International Conference, Proceedings, CAV 2004, July
13-17, 2004, 2004, pp. 475–478.

[10] V. Ganesh, D.L. Dill, A decision procedure for bit-vectors and arrays, in: W. Damm, H. Hermanns (Eds.), Computer Aided Verification, 19th International
Conference, Proceedings, CAV 2007, Berlin, Germany, July 3–7, 2007, in: Lect. Notes Comput. Sci., vol. 4590, Springer, 2007, pp. 519–531.

[11] R. Brummayer, A. Biere, Boolector: an efficient SMT solver for bit-vectors and arrays, in: S. Kowalewski, A. Philippou (Eds.), Tools and Algorithms for
the Construction and Analysis of Systems, 15th International Conference, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, Proceedings, TACAS 2009, York, UK, March 22–29, 2009, in: Lect. Notes Comput. Sci., vol. 5505, Springer, 2009, pp. 174–177.

[12] L.M. de Moura, H. Rueß, An experimental evaluation of ground decision procedures, in: Computer Aided Verification, 16th International Conference,
Proceedings, CAV 2004, Boston, MA, USA, July 13–17, 2004, 2004, pp. 162–174.

[13] L.M. de Moura, N. Bjørner, Z3: an efficient SMT solver, in: C.R. Ramakrishnan, J. Rehof (Eds.), Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Proceedings,
TACAS 2008, Budapest, Hungary, March 29–April 6, 2008, in: Lect. Notes Comput. Sci., vol. 4963, Springer, 2008, pp. 337–340.

[14] B. Dutertre, L. de Moura, The Yices SMT solver, http://yices.csl.sri.com/tool-paper.pdf, 2006.
[15] C. Barrett, C.L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, C. Tinelli, CVC4, in: G. Gopalakrishnan, S. Qadeer (Eds.), Computer

Aided Verification – 23rd International Conference, Proceedings, CAV 2011, Snowbird, UT, USA, July 14–20, 2011, in: Lect. Notes Comput. Sci., vol. 6806,
Springer, 2011, pp. 171–177.

[16] A. Cimatti, A. Griggio, B.J. Schaafsma, R. Sebastiani, The MathSAT5 SMT solver, in: N. Piterman, S.A. Smolka (Eds.), Tools and Algorithms for the
Construction and Analysis of Systems – 19th International Conference, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Proceedings, TACAS 2013, Rome, Italy, March 16–24, 2013, in: Lect. Notes Comput. Sci., vol. 7795, Springer, 2013, pp. 93–107.

[17] M. Huth, M. Ryan, Logic in Computer Science: Modeling and Reasoning about Systems, Cambridge University Press, 2004.
[18] G. Nelson, D.C. Oppen, Fast decision procedures based on congruence closure, J. ACM 27 (1980) 356–364.
[19] W. Craig, Linear reasoning. A new form of the Herbrand–Gentzen theorem, J. Symb. Log. 22 (1957) 250–268.
[20] K.L. McMillan, Interpolation and SAT-based model checking, in: W.A. Hunt Jr., F. Somenzi (Eds.), Computer Aided Verification, 15th International Con-

ference, Proceedings, CAV 2003, Boulder, CO, USA, July 8–12, 2003, in: Lect. Notes Comput. Sci., vol. 2725, Springer, 2003, pp. 1–13.
[21] L. Kovács, A. Voronkov, Interpolation and symbol elimination, in: R.A. Schmidt (Ed.), Automated Deduction – CADE-22, 22nd International Conference

on Automated Deduction, Proceedings, Montreal, Canada, August 2–7, 2009, in: Lect. Notes Comput. Sci., vol. 5663, Springer, 2009, pp. 199–213.
[22] K.L. McMillan, An interpolating theorem prover, Theor. Comput. Sci. 345 (2005) 101–121.
[23] A. Fuchs, A. Goel, J. Grundy, S. Krstic, C. Tinelli, Ground interpolation for the theory of equality, Log. Methods Comput. Sci. 8 (2012).
[24] D. Kapur, R. Majumdar, C.G. Zarba, Interpolation for data structures, in: M. Young, P.T. Devanbu (Eds.), Proceedings of the 14th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering, FSE 2006, Portland, Oregon, USA, November 5–11, 2006, ACM, 2006, pp. 105–116.
[25] A. Brillout, D. Kroening, P. Rümmer, T. Wahl, An interpolating sequent calculus for quantifier-free Presburger arithmetic, J. Autom. Reason. 47 (2011)

341–367.
[26] A. Brillout, D. Kroening, P. Rümmer, T. Wahl, Program verification via Craig interpolation for Presburger arithmetic with arrays, in: M. Aderhold,

S. Autexier, H. Mantel (Eds.), 6th International Verification Workshop, VERIFY-2010, Edinburgh, UK, July 20–21, 2010, in: EPiC Ser. Comput., vol. 3,
EasyChair, 2010, pp. 31–46.

http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F696363642F4D656D696B463032s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F696363642F4D656D696B463032s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F667067612F4E616D53523939s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F667067612F4E616D53523939s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F667067612F4E616D53523939s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6461632F42696572654343465A3939s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6461632F42696572654343465A3939s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F746F636C2F427279616E7447563031s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F746F636C2F427279616E7447563031s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F73746F632F436F6F6B3731s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F73746F632F436F6F6B3731s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6461632F4D6F736B657769637A4D5A5A4D3031s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6461632F4D6F736B657769637A4D5A5A4D3031s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F7361742F45656E533033s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F7361742F45656E533033s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F7361742F45656E533033s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib6261727265747432303039736174697366696162696C697479s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib6261727265747432303039736174697366696162696C697479s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F4C6168697269533034s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F4C6168697269533034s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F47616E657368443037s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F47616E657368443037s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F74616361732F4272756D6D61796572423039s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F74616361732F4272756D6D61796572423039s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F74616361732F4272756D6D61796572423039s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F4D6F757261523034s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F4D6F757261523034s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F74616361732F4D6F757261423038s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F74616361732F4D6F757261423038s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F74616361732F4D6F757261423038s1
http://yices.csl.sri.com/tool-paper.pdf
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F426172726574744344484A4B52543131s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F426172726574744344484A4B52543131s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F426172726574744344484A4B52543131s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F74616361732F43696D617474694753533133s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F74616361732F43696D617474694753533133s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F74616361732F43696D617474694753533133s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib68757468323030346C6F676963s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F6A61636D2F4E656C736F6E4F3830s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F6A73796D6C2F43726169673537s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F4D634D696C6C616E3033s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F4D634D696C6C616E3033s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F4B6F76616373563039s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F4B6F76616373563039s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F7463732F4D634D696C6C616E3035s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F636F72722F6162732D313131312D35363532s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F736967736F66742F4B617075724D5A3036s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F736967736F66742F4B617075724D5A3036s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F6A61722F4272696C6C6F75744B52573131s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F6A61722F4272696C6C6F75744B52573131s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F4272696C6C6F75744B5257313061s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F4272696C6C6F75744B5257313061s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F4272696C6C6F75744B5257313061s1

X. Cheng et al. / Artificial Intelligence 257 (2018) 127–157 157
[27] R. Bruttomesso, S. Ghilardi, S. Ranise, Rewriting-based quantifier-free interpolation for a theory of arrays, in: M. Schmidt-Schauß (Ed.), Proceedings of
the 22nd International Conference on Rewriting Techniques and Applications, RTA 2011, Novi Sad, Serbia, May 30–June 1, 2011, in: LIPIcs. Leibniz Int.
Proc. Inform.LIPIcs, vol. 10, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2011, pp. 171–186.

[28] A. Cimatti, A. Griggio, R. Sebastiani, Efficient generation of Craig interpolants in satisfiability modulo theories, ACM Trans. Comput. Log. 12 (2010)
7:1–7:54.

[29] K.L. McMillan, Interpolants from Z3 proofs, in: P. Bjesse, A. Slobodová (Eds.), International Conference on Formal Methods in Computer-Aided Design,
FMCAD ’11, Austin, TX, USA, October 30–November 02, 2011, FMCAD Inc., 2011, pp. 19–27.

[30] A. Rybalchenko, V. Sofronie-Stokkermans, Constraint solving for interpolation, J. Symb. Comput. 45 (2010) 1212–1233.
[31] G. Yorsh, M. Musuvathi, A combination method for generating interpolants, in: R. Nieuwenhuis (Ed.), Automated Deduction – CADE-20, 20th Inter-

national Conference on Automated Deduction, Proceedings, Tallinn, Estonia, July 22–27, 2005, in: Lect. Notes Comput. Sci., vol. 3632, Springer, 2005,
pp. 353–368.

[32] R. Bruttomesso, S. Ghilardi, S. Ranise, Quantifier-free interpolation in combinations of equality interpolating theories, ACM Trans. Comput. Log. 15
(2014) 5:1–5:34.

[33] C.M. Wintersteiger, Y. Hamadi, L.M. de Moura, A concurrent portfolio approach to SMT solving, in: A. Bouajjani, O. Maler (Eds.), Computer Aided
Verification, 21st International Conference, Proceedings, CAV 2009, Grenoble, France, June 26–July 2, 2009, in: Lect. Notes Comput. Sci., vol. 5643,
Springer, 2009, pp. 715–720.

[34] M. Rozanov, O. Strichman, Generating minimum transitivity constraints in p-time for deciding equality logic, Electron. Notes Theor. Comput. Sci. 198
(2008) 3–17.

[35] J. Slaney, M. Fujita, M. Stickel, Automated reasoning and exhaustive search: quasigroup existence problems, Comput. Math. Appl. 29 (1995) 115–132.
[36] W. Ackermann, Solvable Cases of the Decision Problem, Stud. Logic Found. Math., North-Holland, Amsterdam, 1954.
[37] D. Déharbe, P. Fontaine, S. Merz, B.W. Paleo, Exploiting symmetry in SMT problems, in: N. Bjørner, V. Sofronie-Stokkermans (Eds.), Automated De-

duction – CADE-23 – 23rd International Conference on Automated Deduction, Proceedings, Wroclaw, Poland, July 31–August 5, 2011, in: Lect. Notes
Comput. Sci., vol. 6803, Springer, 2011, pp. 222–236.

[38] Y. Hamadi, S. Jabbour, L. Sais, ManySAT: a parallel SAT solver, JSAT 6 (2009) 245–262.
[39] H. Zhang, M.P. Bonacina, J. Hsiang, PSATO: a distributed propositional prover and its application to quasigroup problems, J. Symb. Comput. 21 (1996)

543–560.
[40] A. Biere, Lingeling, Plingeling and Treengeling entering the SAT competition 2013, in: Proceedings of SAT Competition: Solver and Benchmark Descrip-

tions, in: Dep. Comput. Sci. Ser. Publ. B, vol. B-2013-1, University of Helsinki, 2013, pp. 51–52.
[41] Y. Hamadi, S. Jabbour, L. Sais, Control-based clause sharing in parallel SAT solving, in: C. Boutilier (Ed.), Proceedings of the 21st International Joint

Conference on Artificial Intelligence, IJCAI 2009, Pasadena, California, USA, July 11–17, 2009, 2009, pp. 499–504.
[42] N. Manthey, Parallel SAT Solving – Using More Cores, Technical Report KRR Report 11-02, Technische Universität Dresden, 2011.
[43] Y. Hamadi, J. Marques-Silva, C.M. Wintersteiger, Lazy decomposition for distributed decision procedures, in: J. Barnat, K. Heljanko (Eds.), Proceedings

10th International Workshop on Parallel and Distributed Methods in verifiCation, PDMC 2011, Snowbird, Utah, USA, July 14, 2011, in: EPTCS, vol. 72,
2011, pp. 43–54.

[44] S. Bayless, C.G. Val, T. Ball, H.H. Hoos, A.J. Hu, Efficient modular SAT solving for IC3, in: Formal Methods in Computer-Aided Design, FMCAD 2013,
Portland, OR, USA, October 20–23, 2013, IEEE, 2013, pp. 149–156.

[45] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement for symbolic model checking, J. ACM 50 (2003)
752–794.

[46] S. Das, D.L. Dill, Successive approximation of abstract transition relations, in: 16th Annual IEEE Symposium on Logic in Computer Science, Proceedings,
Boston, Massachusetts, USA, June 16–19, 2001, IEEE Computer Society, 2001, pp. 51–58.

[47] T.A. Henzinger, R. Jhala, R. Majumdar, G. Sutre, Lazy abstraction, in: J. Launchbury, J.C. Mitchell (Eds.), Conference Record of POPL 2002: The 29th
SIGPLAN–SIGACT Symposium on Principles of Programming Languages, Portland, OR, USA, January 16–18, 2002, ACM, 2002, pp. 58–70.

[48] K.L. McMillan, Lazy abstraction with interpolants, in: T. Ball, R.B. Jones (Eds.), Computer Aided Verification, 18th International Conference, Proceedings,
CAV 2006, Seattle, WA, USA, August 17–20, 2006, in: Lect. Notes Comput. Sci., vol. 4144, Springer, 2006, pp. 123–136.

[49] J. Boudou, B.W. Paleo, Compression of propositional resolution proofs by lowering subproofs, in: D. Galmiche, D. Larchey-Wendling (Eds.), Automated
Reasoning with Analytic Tableaux and Related Methods – 22th International Conference, Proceedings, TABLEAUX 2013, Nancy, France, September 16–19,
2013, in: Lect. Notes Comput. Sci., vol. 8123, Springer, 2013, pp. 59–73.

[50] S. Cotton, Two techniques for minimizing resolution proofs, in: O. Strichman, S. Szeider (Eds.), Theory and Applications of Satisfiability Testing – SAT
2010, 13th International Conference, Proceedings, SAT 2010, Edinburgh, UK, July 11–14, 2010, in: Lect. Notes Comput. Sci., vol. 6175, Springer, 2010,
pp. 306–312.

[51] A. Fellner, B.W. Paleo, Greedy pebbling for proof space compression, Int. J. Softw. Tools Technol. Transf. (2017), https://doi.org/10.1007/
s10009-017-0459-0.

[52] J. Boudou, A. Fellner, B.W. Paleo, Skeptik: a proof compression system, in: S. Demri, D. Kapur, C. Weidenbach (Eds.), Automated Reasoning – 7th
International Joint Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Proceedings, IJCAR 2014, Vienna, Austria, July 19–22, 2014, in:
Lect. Notes Comput. Sci., vol. 8562, Springer, 2014, pp. 374–380.

http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F7274612F42727574746F6D6573736F47523131s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F7274612F42727574746F6D6573736F47523131s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F7274612F42727574746F6D6573736F47523131s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F746F636C2F43696D6174746947533130s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F746F636C2F43696D6174746947533130s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F666D6361642F4D634D696C6C616E3131s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F666D6361642F4D634D696C6C616E3131s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F6A73632F527962616C6368656E6B6F533130s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F596F7273684D3035s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F596F7273684D3035s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F596F7273684D3035s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F746F636C2F42727574746F6D6573736F47523134s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F746F636C2F42727574746F6D6573736F47523134s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F57696E74657273746569676572484D3039s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F57696E74657273746569676572484D3039s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F57696E74657273746569676572484D3039s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F656E7463732F526F7A616E6F76533038s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F656E7463732F526F7A616E6F76533038s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib534C414E455931393935313135s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib61636B65726D616E6E31393534736F6C7661626C65s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F44656861726265464D503131s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F44656861726265464D503131s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F44656861726265464D503131s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F6A7361742F48616D6164694A533039s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F6A73632F5A68616E6742483936s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F6A73632F5A68616E6742483936s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib6269657265323031336C696E67656C696E67s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib6269657265323031336C696E67656C696E67s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F696A6361692F48616D6164694A533039s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F696A6361692F48616D6164694A533039s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib6D616E7468657932303131706172616C6C656Cs1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F636F72722F6162732D313131312D30333731s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F636F72722F6162732D313131312D30333731s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F636F72722F6162732D313131312D30333731s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F666D6361642F4261796C657373564248483133s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F666D6361642F4261796C657373564248483133s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F6A61636D2F436C61726B65474A4C563033s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A6A6F75726E616C732F6A61636D2F436C61726B65474A4C563033s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6C6963732F446173443031s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6C6963732F446173443031s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F706F706C2F48656E7A696E6765724A4D533032s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F706F706C2F48656E7A696E6765724A4D533032s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F4D634D696C6C616E3036s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F6361762F4D634D696C6C616E3036s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F7461626C656175782F426F75646F75503133s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F7461626C656175782F426F75646F75503133s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F7461626C656175782F426F75646F75503133s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F7361742F436F74746F6E3130s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F7361742F436F74746F6E3130s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F7361742F436F74746F6E3130s1
https://doi.org/10.1007/s10009-017-0459-0
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F426F75646F7546503134s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F426F75646F7546503134s1
http://refhub.elsevier.com/S0004-3702(18)30023-7/bib44424C503A636F6E662F636164652F426F75646F7546503134s1
https://doi.org/10.1007/s10009-017-0459-0

	Parallelizing SMT solving: Lazy decomposition and conciliation
	1 Introduction
	2 Preliminaries
	2.1 First-order logic
	2.2 The theory of equality
	2.3 Craig interpolation

	3 A motivating example
	4 The LDC framework
	4.1 Lazy decomposition
	4.2 Conciliation

	5 Instantiation in TE
	5.1 Decompose: make lazy decomposition
	5.2 Solve and Interpolate
	5.3 ComputeSharedInterp: compute a shared interpretation
	5.4 Formulate: characterize interpretation as formula
	5.5 CombineInterp: combine interpretations for subformulae
	5.6 ReﬁneSharedInterp: reﬁne the shared interpretation
	5.7 Running example

	6 Discussion
	6.1 Soundness and completeness
	6.2 Termination
	6.3 Generality

	7 Experimental evaluation
	7.1 Solver implementation
	7.2 Experimental setup
	7.3 Evaluation of parallel efﬁciency
	7.4 Speed-up and formula sparseness
	7.5 Speed-up factor analysis
	7.6 Proﬁling analysis
	7.7 Comparison with the portfolio approach

	8 Related work
	9 Conclusion and future work
	Acknowledgements
	Appendix A Proofs for model isomorphism
	Appendix B Proofs for the soundness of LDC interfaces
	B.1 Proof of Lemma 6
	B.2 Proof of Lemma 7
	B.3 Proof of Lemma 8
	B.4 Proof of Lemma 9

	References

