
Tolerating C Integer Error via Precision Elevation
Xi Cheng , Min Zhou , Xiaoyu Song, Ming Gu, and Jiaguang Sun

Abstract—In C programs, integer error is a common yet important kind of defect due to arithmetic operations that produce

unrepresentable values in certain types. Integer errors are harbored in a wide range of applications and possibly lead to serious

software failures and exploitable vulnerabilities. Due to the complicated semantics of C, manually preventing integer errors is

challenging even for experienced developers. In this paper we propose a novel approach to automate C integer error repair by elevating

the precision of arithmetic operations according to a set of code transformation rules. A large portion of integer errors can be repaired

by recovering expected results (i.e., tolerance) instead of removing program functionality. Our approach is fully automatic without

requiring code specifications. Furthermore, the transformed code is ensured to be well-typed and has conservativeness property with

respect to the original code. Our approach is implemented as a prototype CINTFIX which succeeds in repairing all the integer errors from

7 categories in NIST’s Juliet Test Suite. Furthermore, CINTFIX is evaluated on large code bases in SPEC CINT2000, scaling to 366

KLOC within 126 seconds while the transformed code has 10.5 percent slowdown on average. The evaluation results substantiate the

potential of our approach in real-world scenarios.

Index Terms—Integer error, tolerability, code transformation

Ç

1 INTRODUCTION

IN C programs, an integer numerical operation may yield
a result that cannot be represented in a specific expression

type, and such a value is somehow converted to fit into
the target type. Some conversions are well-defined (e.g.,
unsigned wraparound) by the ISO C standard [1] while
others are undefined (e.g., signed integer overflow). Integer
errors originate from the misuse of defined behaviors
and the use of undefined behaviors due to the developer’s
empirical certainty of the expected outcomes. Integer errors
are classified into several kinds [2]: overflow, underflow,
sign misinterpretation, unexpected truncation or sign exten-
sion. Integer errors are one of the major sources of system
failures and vulnerabilities. A potential problem associated
with the power system in Boeing 787 Dreamliners [3] was
identified in 2015. A counter represented by a 32-bit signed
integer overflows after 231 centiseconds (approximately
248 days), which causes the power system to halt. Multiple
integer overflows in the NVIDIA GPU kernel mode driver
can be exploited to access out-of-bound memory [4], leading
to possible information disclosure, crashes and escalation of
privilege. According to a CVE report in 2007 [5], integer
overflow error is the second most common vulnerability in
the advisories for OS vendors. MITRE also placed integer
overflow in the “Top 25 Most Dangerous Software Errors”
in 2011 [6].

The manipulation of integers in programming is error-
prone due to the complicated semantics of C integers.
The machine representation of an integer value is a fixed-
size bit-vector restricted by type-specific characteristics:
width and signedness. The encoding determines how a fixed-
size bit-vector is interpreted as a numerical value. The most
commonly used encodings are binary encoding for unsigned
integers and two’s complement for signed integers. Consider
the n-bit bit-vector x ¼ an�1 . . . a0, its interpretations under
binary encoding and two’s complement (denoted by hxiU
and hxiS , respectively) are as follows:

hxiU ¼
Xn�1

i¼0

ai � 2i

hxiS ¼ �2n�1 � an�1 þ
Xn�2

i¼0

ai � 2i:

The semantics over C integers and Z are inconsistent.
For example, the formula ðx� y > 0Þ () ðx > yÞ holds
over Z but no longer holds over fixed-size bit-vectors owing
to the overflow in x� y. Even worse, not all integer arithme-
tic operations are defined in the language standard, such as
signed integer overflow. Undefinedness may lead to unpre-
dictable runtime behavior across different micro-processor
architectures, compilers and optimization levels.

Researchers have shown great interest in addressing
C integer errors automatically. A number of solutions have
been proposed for automatic integer error detection.
Numerical abstract domains, such as interval [7], octagon [8]
and polyhedron [9], are used to reason on numerical
program properties. KINT [10] finds integer errors in large C
code bases by performing static analysis on a selected subset
of variables and inferring user’s annotations. LLBMC [11],
a bounded model checker, uses a flat and bit-precise mem-
ory abstraction to support precise reasoning of arithmetic
overflow and memory-based re-interpret casts. IOC [12]

� X.Cheng,M. Zhou,M. Gu, and J. Sun are with the School of Software, Tsing-
hua University, Beijing 100084, China. E-mail: chengxi09@gmail.com,
{mzhou, guming, sunjg}@mail.tsinghua.edu.cn.

� X. Song is with the Department of Electrical and Computer Engineering,
Portland State University, Portland, OR 97201. E-mail: songx@pdx.edu.

Manuscript received 8 June 2018; revised 6 Aug. 2018; accepted 13 Aug. 2018.
Date of publication 20 Aug. 2018; date of current version 22 Jan. 2019.
(Corresponding author: Min Zhou.)
Recommended for acceptance by J.-M. Muller.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2018.2866388

270 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

0018-9340� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3870-1577
https://orcid.org/0000-0003-3870-1577
https://orcid.org/0000-0003-3870-1577
https://orcid.org/0000-0003-3870-1577
https://orcid.org/0000-0003-3870-1577
https://orcid.org/0000-0002-4679-0488
https://orcid.org/0000-0002-4679-0488
https://orcid.org/0000-0002-4679-0488
https://orcid.org/0000-0002-4679-0488
https://orcid.org/0000-0002-4679-0488
mailto:
mailto:
mailto:

captures integer overflow errors at runtime via code instru-
ment. SMARTFUZZ [13] derives test cases that trigger integer
overflows by random fuzzing. Although sound reporting of
integer errors with few false positives is possible in some
domain-specific scenarios [14], detection tools provide few
guides for developers to correct the buggy implementation.
In practice, manual repair of integer errors is prone to addi-
tional errors, even for experts (Section 5.1).

Other approaches have been proposed to automate inte-
ger error repair. Coker and Hafiz [15] propose three code
transformations based on design decisions. SIFT [16] inserts
input filters in the program binary to guard the program
from overflow errors at the sites of memory allocation
and copy. SOUPINT [17] repairs exploitable integer overflows
in x86 binaries by leveraging existing error handlers for
programmer-anticipated errors. There are several common
drawbacks in the existing techniques: (1) the majority of
them focus on a fragment of integer errors (e.g., integer
overflows in memory operations); and (2) integer errors
are repaired by functionality removal, which jeopardizes
the robustness of the repaired programs.

Furthermore, recent interest in generic program repair
has grown substantially, as evidenced by many individual
research projects [18], [19], [20], [21]. Themost representative
approach is generate-and-validate, which heuristically gener-
ates many candidate patches by mutating program struc-
tures and then validates them until a patch that passes all the
given test cases is found. However, generic repair techniques
face several fundamental difficulties: (1) the effectiveness
relies heavily on the quality of the test cases, which are often
insufficient or incomplete; (2) the generated patches rarely
ensure correctness [22]; and (3) generate-and-validate sys-
tems generally require hours of search for a real-world bug.

In this paper, we propose a novel approach to repair
C integer errors automatically by elevating arithmetic
precision, i.e., extending the range of integers where error
may occur. This approach is inspired by the key observation
that the root cause of integer errors is bound to the finite
machine representation of integers. Precision elevation has
several benefits. First, a substantial number of integer errors
can be repaired by functionality recovery instead of removal.
Consider the typical implementation of quick sort shown
in Fig. 1. If the array to be sorted is very long, left+right
possibly overflows while the index for pivot never exceeds
the maximum value of int. After elevating the precision
of left and right by changing their declared types
to long (assuming that long has longer byte length than
int on the certain platform), the program will run normally
as expected. Second, precision elevation is conservative.
In other words, the outputs of a program and its repaired
version are the same given the input that does not trigger
any integer errors or wraparounds in the original program.
Third, it is possible to apply precision elevation to source

code without bug detection or fault localization in advance,
thus integer error repair can be run in an efficientmanner.

Overall, this paper makes the following contributions:

� Definition of tolerability. We define the concept of tol-
erability for integer errors. Generally, tolerable errors
can be repaired by recovering expected results via
precision elevation.

� An automatic approach for elevating integer precision in
programs. We propose a source-to-source transforma-
tion technique to repair integer errors in C programs.
The input source code is transformed into code that
utilizes multi-precision integer arithmetic to be com-
piled to the executable with integer errors eliminated.

� A prototype CINTFIX.We implement our approach as a
prototype CINTFIX that supports integer error repair
in a complete C project or some specified source files.

� Experimental evaluation.We evaluate our approach on
7 categories in the Juliet Test Suite, and the results
show that all the integer errors in the benchmark
can be repaired correctly. Moreover, we use the
SPEC CINT2000 benchmark to evaluate the effi-
ciency. The results show that (1) CINTFIX processes
the source code at 2.92 KLOC/s and (2) the trans-
formed code introduces 10.5 percent runtime
overhead. The results substantiate the potential of
our approach for practical use.

Some of these points were previously presented in an
early version of this work [23]. The major substantial exten-
sions of this paper include:

� A case study on the tolerability of integer errors.
We study the tolerability of real-world integer errors
in the CVE database. The result shows that approxi-
mately 43.0 percent of integer errors are tolerable,
which substantiates the importance of repairing inte-
ger errors with functionality recovery.

� An overhauled formalization for code transformation.
A subset of C, namely CSub, serves as the vehicle for
formalization. The semantics on integer arithmetic in
CSub is strictly consistent with that defined in C11.
We also extend CSub into CSubMP with the multi-
precision integer type. Furthermore, the well-typed-
ness of the transformed code and the conservativeness
of the code transformation are formally established.

� Critical-site-directed code transformation. Precision ele-
vation can be selectively applied to expressions
closely associated with security-critical sites at which
attacks are performed on the subject programs. This
optimization substantially reduces the overhead of
the transformed code.

� Customizable code transformation. Customization of
transformation rules is supported to prevent intro-
ducing additional errors by corrupting intentional
wraparounds.

The rest of this paper is organized as follows. Section 2
overviews C integer errors and defines their tolerability.
Section 3 gives the details of the code transformation used to
perform the precision elevation. Section 4 presents the design
and implementation of CINTFIX on standard C. The evaluation
results are discussed in Section 5. Section 6 briefly surveys
related research. Finally, Section 7 summarizes ourwork.

Fig. 1. A simplified implementation of quick sort.

CHENG ETAL.: TOLERATING C INTEGER ERROR VIA PRECISION ELEVATION 271

2 BACKGROUND

2.1 C Integer Errors

C integer errors occur in arithmetic operations (including
addition, subtraction, multiplication, division, remainder and
bitwise shift) and conversion operations due to the finite
machine representation of integers. C integer operations
are not always defined, as shown in Table 1.1 The notationþs

represents addition over signed integers, and so forth
for other similar notations. The signedness of a bitwise shift
is consistent with that of the promoted type of the value to be
shifted. Note that division-by-zero and shift-by-negative-
value are not categorized as integer errors as they are irrele-
vant to representation issues.

There are two major categories of integer errors. The first
involves undefined behaviors, which are behaviors upon the
use of certain program constructs or data for which
the language standard imposes no requirements. On the one
hand, undefined behavior mechanisms grant compilers the
freedom to generate high-performance code by exploiting
specific properties of a target instruction set. On the other
hand, a program with undefined behaviors may expose
unpredictable behaviors across different micro-processor
architectures, compilers or optimization levels.

Example 1. Signed overflow is undefined. On most x86
platforms, signed addition and subtraction silently wrap-
around using two’s complement. On MIPS, however, they
trap on overflows at the instruction level [24].

Example 2. Consider the following code snippet:

int x = /* from user space */

if (x + 100 < x){

/* do something */

}

The if condition checks for a possible overflow issue in
x + 100. GCC 5.4.0 optimizes away the overflow check

on the -O2 level because it assumes that signed integer
overflow is impossible due to undefinedness.

The second category involves the misuse of defined
behaviors, including those explicitly specified by the lan-
guage standard and the documentation of the implementa-
tion in use. It is noteworthy that developers do not need
to worry about implementation-defined behaviors unless
portability is required, whereas undefined behaviors are
unpredictable and thus generally undesired. Consider the
code snippet from libtiff shown in Fig. 2. Attackers can use a
crafted image with very large rowsperstrip and bytes_

per_sample to make rowstripsize wraparound to a
small value, leading to undersized allocation. The wrapped
multiplication result, which complies with the language
standard, does not meet the developer’s expectation.

2.2 Tolerability of Integer Errors

A straightforward solution for representation issues is to
use more bits to represent integers. If a sufficiently large bit-
width is employed universally, representation issues can be
eliminated. Tolerating an integer error is the process of
recovering the user-anticipated program behavior by evalu-
ating certain expressions at a properly elevated precision.
Tolerance differs from sanitization in that program func-
tionality vulnerable to target defects is corrected instead of
removed. The major advantage of tolerance over sanitization
is that the repaired program maintains the acceptability of
continued execution, i.e., it has stronger robustness.

However, tolerance is not always feasible. For example, a
multiplication overflow in the size for malloc cannot be tol-
erated because it is impossible to change the signature of
malloc (which is not part of the subject program) to allocate
a very large memory block. Therefore, an integer error is
intolerable iff the correct value of the buggy expression must
be stored in amemory location that has insufficient precision
to represent the value and its precision cannot be elevated.
In addition to library function parameters, expressions such
as field accesses cannot have their precisions elevated because
changing the definitions of data structures may hinder the
correctness of the relevant pointer arithmetic. An intolerable
error can be repaired by enclosing the buggy expression with
a sanitizing routine that returns the value of its argument
only if it is representable in the target type, and otherwise
switches the program execution to an error handler.

In short, tolerability is a property for integer errors,
and indicates whether the given integer error could have
program functionality corrected by precision elevation.

3 CODE TRANSFORMATION

We present a source-to-source code transformation tech-
nique to convert the input source code into code that utilizes

TABLE 1
The Definedness of Integer Operations in C11

Fig. 2. The unsigned overflow error in libtiff.

1. The definedness shall be different under previous/future lan-
guage standards. However, this does not make substantial differences
in our discussion.

272 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

multi-precision integer arithmetic to be compiled to the
executable with integer errors eliminated. We use a subset
of C called CSub to serve as the vehicle for formalizing the
code transformation. The design of CSub is partly inspired
by Clight [25], and specifically focuses on the semantics
of integer operations. The semantics of CSub complies with
C11. The semantics of the implementation-defined behav-
iors is among the possible implementations. Before the
formal discussion, we first present a small example to dem-
onstrate how the code transformation works.

3.1 Motivating Example

Fig. 3a shows a simple program where printInt is a
library function that prints the input integer value and an
overflow error occurs at line 2. The transformed program
by elevating the integer precision is shown in Fig. 3b.
mp_int denotes multi-precision integer type while
_check_int_(ret) returns the int value of ret only
if ret is representable in int, and otherwise switches to an
error handler. It is noteworthy that the return type of main
and the parameter type of printInt are unmodifiable by
the subject program, thus they are not elevated. The trans-
formed program has the overflow error repaired because
the multiplication result at line 2 is correctly recovered
under multi-precision integer arithmetic.

3.2 The Language CSub

Notations. The notation se� denotes 0,1 or multiple occur-
rences of the syntactic element se, and se? denotes the
optional occurrence of the syntactic element se.

Types. Type syntax of CSub is shown in Fig. 4a. Sup-
ported types include integer types, structured types, array
types, pointer types and function types. An integer type
intðn; &Þ is characterized by its byte-length n and signed-
ness & (S for signed and U for unsigned). In CSub, the legal
values of n are predefined by the employed data model (i.e.,
data type width scheme). For example, in a typical x86-64
platform, the legal values of n are 1, 2, 4 and 8. An array
type t½n� carries the array size n which is determined at
compile time. Array types with unknown sizes in C are
modeled by the corresponding pointer types in CSub.
A structured type carries an identifier id and a list of named
types f. For anonymous structured types in C, generated
names are assigned at compile time. A recursive pointer
type recur ptrðidÞ models a pointer type to the nearest
enclosing structured type with identifier id and is used for
recursive data structures. For example, the structured type
L for linked lists can be defined as follows:

structðL; ððval; tÞ; ðnext; recur ptrðLÞÞÞ:

Recursive pointer types make CSub types finitely construct-
ible (i.e., each CSub type can be constructed in finite steps
based on abstract syntax of types). With a small abuse of nota-
tion, in the rest of the paper, we use t� in place of
recur ptrðidÞ, where t is the typewith the identifier id.CSub
does not support type qualifiers in C as they can be erased at
compile time.

Expressions. Fig. 4b shows the syntax of expressions.
Each expression is either an l-value or r-value. Only l-values
can refer to memory locations and thus can be assigned.
L-values include identifiers (id), pointer dereferences (�e)
and field accesses (e:id). It is noteworthy that (1) floating
constants are unsupported and (2) one can specify the type
of an integer literal by appending a suffix, which could be
the combination of an unsigned-suffix u, a long-suffix l and
a long-long-suffix ll. Expressions are side-effect-free. Some
C expressions are not modeled as they can be expressed as
syntactic sugars, as shown in Table 2.

Statements. Fig. 4c shows the syntax of statements. Sup-
ported statements include empty statements, assignments,
function calls, statement sequences, branching statements,
loops, and control statements for loops and functions.

Functions and Programs. As Fig. 4d shows, a CSub pro-
gram P consists of global declarations, function definitions
and the program entry main. Standalone type declarations
and type aliases are not supported in CSub because types
can be resolved at compile time in C.

Fig. 3. A motivating example of code transformation.

Fig. 4. The abstract syntax of CSub.

TABLE 2
The Syntactic Sugars for Some C Expressions

CHENG ETAL.: TOLERATING C INTEGER ERROR VIA PRECISION ELEVATION 273

Static Semantics. The type judgment

Gg;Gf ‘ e : t;

denotes that given the typing context ðGg;GfÞ, the type of the
expression e (in the function scope of f) is inferred as t. Gg

maps the identifiers of global variables to their declared
types. Gf maps the parameter variables and local variables
of the function f to their declared types. If e is in the global
scope, we have Gf ¼ ;. CSub does not support variable
overshadowing, thus we have DomðGgÞ \DomðGfÞ ¼ ;.

Fig. 5 gives type inference rules for CSub under the LP64
data model, where int, long and a pointer type have 4, 8
and 8 bytes, respectively. Implicit conversions other than
integer promotion (C11 6.3.1.1) and usual arithmetic conver-
sion (C11 6.3.1.8) are not supported in CSub, thus (1) both
sides of an assignment have the same types, (2) a function
argument has the same type as the corresponding parame-
ter, and (3) the type of a return value is the return type
of the enclosing function. Some auxiliary predicates and
operations (shown in Fig. 6) are introduced to make type
inference rules compliant with C11. The predicate I (resp.
P) checks whether a type is an integer type (resp. a pointer
type or an array type). {ðsz; &; nÞ chooses a type for the given
integer literal n restricted by the minimum byte length sz
and the signedness &. t1 � t2 holds iff t1 and t2 are com-
patible (C11 6.2.7). The operation # flattens an array type to
a pointer type. The operation " models integer promotion,
and * models usual arithmetic conversion. The dedicated
operation for conditional expressions M returns a valid type
only if the types of the operands meet the constraints in C11
6.5.15,2 and otherwise returns an invalid type �. Once an

invalid type is derived, type inference fails, which implies
that the program has syntax errors.

Dynamic Semantics. We focus on the operational seman-
tics of CSub expressions relevant to integer errors. The
basic concepts are listed in Fig. 7. A memory location l is
denoted with an abstract address a 2 N and an offset d

which is non-negative. The null pointer points to the spe-
cial memory location ð0; 0Þ. An abstract memory state M
maps a memory location l and a type t to an abstract value
v interpreted under t. An abstract value can be an integer
over Z, a reference PðlÞ to a memory location l, or an unde-
fined value � that makes the execution fail. An expression
is evaluated based on a program state consisting of a global
environment Dg that maps identifiers to abstract addresses
and function definitions, a local environment Df that maps
parameters and local variables to their abstract addresses,
and the memory state M that abstracts the contents in the
memory. Since expressions are side-effect-free, ðDg;Df ;MÞ
remains unchanged in the evaluation.

Fig. 8 lists the operational semantics of CSub expressions
relevant to integer errors. Rules (21-24) evaluate l-values as
memory locations. ôðf; idÞ denotes the offset of id in the field
list fwhile the paddings between structure members are con-
sidered. Rule (25) loads an abstract value for the given l-value.
Rules (26-30) evaluate r-values as abstract values. Rules (27-
30) are relevant to integer errors. Cðv; tÞ converts value v in
type t, such that

CðZðnÞ; tÞ ¼ Zððv� tÞmod ðt � tÞ þ tÞ if IðtÞ
CðPða; dÞ; tÞ ¼ ZðNa þ dÞ if t ::¼ intð ; Þ ^Na þ d 2 ½t; t�
CðZð0Þ; t�Þ ¼ Pð0; 0Þ
CðZðnÞ; t�Þ ¼ Pðl0Þ if n 6¼ 0

CðPðlÞ; t�Þ ¼ PðlÞ
Cðv; tÞ ¼ � otherwise:

Fig. 5. The type inference rules for CSub expressions.

2. In fact, there is one exception. In CSub, t1 is required to be an inte-
ger type while C11 allows it to be a pointer type. A pointer p serving as
a condition expression can be expressed as the syntactic sugar p ! ¼ 0.

274 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

An integer value is fit in a target integer type t by being
enlarged or reduced modulo t � t where t (resp. t) refer to
the largest (resp. smallest) value that can be represented in
the integer type t. Such a conversion is strictly compliant
with C11 for unsigned t and is also a possible implementa-
tion for signed t. A pointer reference Pða; dÞ is converted to

ZðNa þ dÞ if it can be represented in the target type t, where
Na is a specified positive integer for a. A non-zero integer
ZðnÞ is converted to Pðl0Þ, where l0 may refer to an invalid
memory location. ^uð^u; v; tÞ is the result of ^u on v in type
t, such that

^uðe;ZðnÞ; tÞ ¼ bit compðn; tÞ if IðtÞ
^uð�;ZðnÞ; tÞ ¼ CðZð�nÞ; tÞ if t ::¼ intð ; UÞ
^uð�;ZðnÞ; tÞ ¼ Zð�nÞ if t ::¼ intð ; SÞ ^ �n 2 ½t; t�
^uð^u;ZðnÞ; tÞ ¼ � otherwise;

where bit compðn; tÞ denotes the bitwise complement result
of n in type t. ^bð^b; v1; v2; t1; t2; tÞ is the result of ^b over v1
and v2 with respect to the operand types t1; t2 and their com-
bined type t (which can be inferred from t1 and t2), and its
full definition is shown in Fig. 9. The result of an undefined
arithmetic operation (e.g., overflowed signed addition) is �,
whereas we specify a possible result for an implementation-
defined operation (e.g., right-shift a negative value). The
notation bit andðn1; n2; tÞ denotes the bitwise AND result
of n1 and n2 in type t, and Wðn; tÞ refers to the bit-width
of integer value n in type t.

Integer Errors. Recall that there are two categories of inte-
ger errors. One involves undefined behaviors (Type I), and
the other involves the misuse of defined behaviors (Type II).
Formally, e has a Type I integer error under programs state
ðDg;Df ;MÞ iff

(1) when e ::¼ ^ue1, Dg;Df ;M ‘ e1) v1, v1 6¼ � and
Dg;Df ;M ‘ e) �;

(2) when e ::¼ e1^be2, suppose that for each i ¼ 1; 2,
Dg;Df ;M ‘ ei) vi and vi 6¼ �, then:

(a) Dg;Df ;M ‘ e) �;

Fig. 7. Basic concepts of dynamic semantics.

Fig. 6. The auxiliary predicates and operations.

Fig. 8. The operational semantics for selected CSub expressions. T ðeÞ denotes the type of e.

CHENG ETAL.: TOLERATING C INTEGER ERROR VIA PRECISION ELEVATION 275

(b) if ^b 2 f=; %g, v2 6¼ Zð0Þ;
(3) if ^b 2 f<< ; >> g, v2 ¼ ZðnÞwhere n 	 0.

If e has a Type II integer error, then

Dg;Df ;M ‘ e) ZðnÞ ^ n 6¼ EðDg;Df ;M; eÞ;

where EðDg;Df ;M; eÞ denotes the expected value of e under
the specified program state.

3.3 CSubMP: CSub with Multi-Precision Integers

CSubMP is a dialect of CSub that supports multi-precision
integers. Let bt be the type variable in CSubMP, then we
have bt ::¼ t j dint, where dint is the multi-precision integer
type. The abstract syntax implies that dint cannot be used
to construct derived types (e.g., pointer types).

Static Semantics. The type inference rules are all appli-
cable for CSubMP on the premise that I , { and * are
replaced by bI , b{ and b*, respectively. Their definitions are
as follows.

bIðtÞ ¼ true if t ::¼ dintbIðtÞ ¼ IðtÞ otherwise
b{ðsz; &; nÞ ¼ dint if n cannot be represented by intð8; &Þ
b{ðsz; &; nÞ ¼ {ðsz; &; nÞ otherwise

t1 b*t2 ¼ dint if either t1 or t2 is dint
t1 b*t2 ¼ t1 * t2 otherwise:

Dynamic Semantics. The operational semantics of CSubMP
is consistent with that of CSub only if C, ^u and ^b are
replaced by bC, ĉu and b̂b, respectively.

bCðZðnÞ;dintÞ ¼ ZðnÞ
bCðv; tÞ ¼ Cðv; tÞ
ĉuðe;ZðnÞ;dintÞ ¼ �
ĉuð�;ZðnÞ;dintÞ ¼ Zð�nÞ
ĉuð^u;ZðnÞ; tÞ ¼ ^uð^u;ZðnÞ; tÞ:

Fig. 10 shows the definition of b̂b. Generally, the result
of b̂bð^b;Zðn1Þ;Zðn2Þ; t1; t2;dintÞ is consistent with that of ^b

over n1 and n2 under mathematical arithmetic. Moreover,
bitwise logical operations are undefined over multi-precision
integers.

3.4 Transformation from CSub to CSubMP

The goal of code transformation is to utilize multi-precision
integers in place of the bounded integers of built-in types
such that certain arithmetic operations can have results con-
sistent with those under mathematical integer arithmetic.

The code transformation rules are listed in Fig. 11. For each
rule, the top part contains auxiliary computations and precon-
dition checks. If successful, the transformation at the bottom
is performed. The transformation operation is denoted by H .
For each syntactic element se, we use bse to denote its transfor-
mation. Two notations are introduced in the transformed
code, BCHðbe; tÞ and BCVðbe; tÞ such that

BCHðZðnÞ; tÞ ¼ ZðnÞ if n 2 ½t; t�
BCHðZðnÞ; tÞ ¼ � otherwise

BCVðZðnÞ; tÞ ¼ CðZðnÞ; tÞ:

Fig. 10. The definition of ĉb.

Fig. 9. The definition of ^b. n
0
i ¼ CðZðniÞ; tÞ for i ¼ 1; 2.

276 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

BCH denotes a checked conversion that filters out values
that are not representable in the given type, while BCV

denotes a unchecked conversion that fits the given value in
the specified type. The two notations can be regarded as
macros, which are replaced with code at compile time.

We briefly explain the code transformation rules. Rule
(31) is applied to programs, and rule (32) is applied to func-
tion definitions. As rule (33) shows, the declaration of the
integer variable id is elevated by creating a multi-precision
variable id0 while maintaining the original one. The former
is used for multi-precision arithmetic operations, and the
latter is used for pointer manipulation. For the correctness
of transformed programs, the consistency between an ordi-
nary variable and its elevated form should be carefully
maintained by value update. For the assignment to a local
integer variable (i.e., x ¼ e), we assign be to bx and update x
accordingly. The reasons for the design choice that x is
updated with the unchecked conversion on bx are as follows:
(1) if a checked conversion is employed instead, the pro-
gram would halt once x overflows; (2) the ordinary variable
is used only for transforming operations involving pointer
dereference; (3) even if x and bx are inconsistent, their com-
mon lower bits are the same. For the assignment to an inte-
ger pointer (i.e., �p ¼ e in rule (34B)) where the points-to set
of p possibly contains integer variables x1; . . . ; xt, we update
each bxi with respect to xi because pointer manipulations
only involve ordinary variables. For integer assignment
where the left-hand side (LHS) is not a variable, we check if
the elevated right-hand-side can fit into the type of the LHS.
Rule (35) shows a special case of the rule for function calls.
A function call is transformed by (1) inserting sanity checks
on the elevated arguments of integer types; (2) performing
value updates for local integer variables which are possibly
modified via pointer arguments. We omit the rules for

function call assignments because they are simply combi-
nations of rules (34A-34D, 35). Rules (39A-39B) are applied
to return statements. We add sanity checks on return
expressions of integer types to ensure that their values can
fit into the return types. Rules (45, 47) cast operands of bit-
wise logical operations to their original types. The other
rules are self-explanatory. For the cases other than function
call assignments not covered by the rules listed in Fig. 11,
identity transformation is applied.

In a word, our approach elevates the arithmetic precision
of a program by (1) replacing local integer variables with
multi-precision variables; (2) replacing arithmetic opera-
tions with multi-precision ones. Each elevated variable
has its ordinary variable retained for operations on the cer-
tain variable addressed through pointers. The consistency
between elevated variables and ordinary variables are care-
fully maintained via value updates.

The listed rules imply that code transformation does not
alter (1) signatures of functions, (2) types of global variables,
and (3) definitions of structured types. This design decision
(1) makes function-wise code transformation possible, as
values spanning multiple function scopes have their preci-
sions fixed; and (2) prevents incorrect pointer arithmetic
over data structures.

We employ intra-procedural, Anderson’s algorithm [26]
based pointer analysis to infer points-to relations. Inter-
procedural analysis is unnecessary as only local variables
are elevated. From the perspective of abstract interpretation,
the abstract domain is D : L ! 2L, where L is the set of l-
values. For the soundness and efficiency of the analysis,
when jDðlÞj 	 4, we set DðlÞ as L, which is based on the
observation that most of the points-to sets have sizes less
than 4 [27]. When l points to an integer value, DðlÞ
 Dv.
As an optimization, if a local integer variable x does not

Fig. 11. The code transformation rules.Dv denotes the set of local integer variables, P maps an expression to its possibly points-to l-values. P � maps
an expression to l-values over one or more points-to relations, formally P �ðeÞ ¼ fel j el 2 P ðe0Þ, where e0 ¼ e or e0 2 P �ðeÞg.

CHENG ETAL.: TOLERATING C INTEGER ERROR VIA PRECISION ELEVATION 277

appear in any points-to sets, there is no need to maintain x’s
original declaration, thus no value updates are required.

In the following, we establish two important properties
of code transformation. First, the transformed code is well-
typed. Second, the transformed code behaves differently
only on inputs that trigger integer errors and/or wrap-
arounds in the original program.

Lemma 1. Let e be an expression where t ¼ T ðeÞ and :IðtÞ.
If e H be, then we have T ðbeÞ ¼ t.

Lemma 2. Let e be an expression where t ¼ T ðeÞ and IðtÞ.
If e H be, then we have

1) T ðbeÞ ¼ t when e is a non-variable l-value;
2) bIðT ðbeÞÞ otherwise.

Proof Sketch. We use PniðeÞ and PiðeÞ to denote Lemmas 1
and 2, respectively. PniðeÞ and PiðeÞ are proved by induc-
tion over expression transformation rules (40-50). The full
proof is presented in Appendix A, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TC.2018.2866388. tu

Theorem 3. The transformed code is well-typed.

Proof Sketch. We prove the following statements using
Lemmas 1 and 2: (1) for each assignment, its LHS and
RHS (right-hand side) have identical types; (2) the type of
a function argument and the type of its corresponding
parameter are identical; and (3) the type of a return value
is identical to the return type of the enclosing function.
The full proof can be referred in Appendix B, available in
the online supplemental material. tu

The program states of the transformed program are not
directly comparable with those of the original program
because of the elevated integer variables. Tomake them com-
parable, we propose the concept of elevated program state.

Definition 1. Let P be a program and P H bP . ðDg;Df ;MÞ is a
state for P while ðcDg;cDf ; bMÞ is a state for bP . We say ðcDg;cDf ; bMÞ
is an elevated program state of ðDg;Df ;MÞ if:

(1) Dg ¼ cDg;
(2) Df
 cDf , for each ðid0; aÞ 2 cDf n Df , DfðidÞ is defined;
(3) M
 bM, and bM nM ¼ fða; fðð0;dintÞ; vÞgÞ j ðid0; aÞ 2cDf n Df ; v ¼ MðDfðidÞÞð0; T ðidÞÞg.

Lemma 4. Given a program state ðDg;Df ;MÞ and an expression
e such that:

1) Dg;Df ;M ‘ e) v where v 6¼ �;
2) for each CðZðnÞ; tÞ used in evaluating e where IðtÞ

holds, we have CðZðnÞ; tÞ ¼ ZðnÞ.
Suppose e H be and ðcDg;cDf ; bMÞ is an elevated program state of
ðDg;Df ;MÞ, then:

1) cDg;cDf ; bM ‘ be) v;
2) if e is an l-value other than a local integer variable, then

we haveDg;Df ;M ‘ e (l andcDg;cDf ; bM ‘ be (l.

Proof Sketch. Weuse PvðeÞ andPlðeÞ to denote propositions
(1) and (2), respectively. Let �ðeÞ and b�ðeÞ be the evaluated
values of e under the program states ðDg;Df ;MÞ and

ðcDg;cDf ; bMÞ, respectively. PvðeÞ and PlðeÞ are proved by

induction over expression kind. The full proof is presented

in Appendix C, available in the online supplemental

material. tu
Suppose P is a CSub program and P H bP , we assume

that P and bP allocate the same abstract addresses for varia-
bles and function parameters in common. This assumption
is plausible via careful abstractions on P and bP . Theorem 4
implies that given the initial program state ðDg;Df ;MÞ for

P and its elevated state ðcDg;cDf ; bMÞ for bP , after respective
executions of P and bP , the resultant state for bP is still the
elevated state of the resultant state for P .

Theorem 5. The transformed code has no Type I integer errors.

Proof. According to rules (44-48) and the definitions of ĉu

and b̂b, Type I integer errors possibly occur in the trans-
formed expressions by rules (44, 46).

For the expression �ððdintÞbeÞ produced by rule (44),
suppose that b�ððdintÞbeÞ ¼ ZðnÞ 6¼ �, then b�ð�ððdintÞbeÞÞ ¼
Zð�nÞ 6¼ �.

For the expression ððdintÞbe1Þ^b be2 (denoted by be) pro-
duced by rule (46), suppose that b�ððdintÞbe1Þ ¼ Zðn1Þ 6¼ �
and b�ðbe2Þ ¼ Zðn2Þ 6¼ �, according to the definition of b̂b,
we have:

1) when ^b 2 f=; %g and n2 6¼ 0, b�ðbeÞ 6¼ �;
2) when ^b 2 f<< ; >> g and n2 	 0, b�ðbeÞ 6¼ �;
3) otherwise, b�ðbeÞ 6¼ �. tu

3.5 Intentional Wraparounds

Defined wraparounds (e.g., unsigned integer overflow)
can be intentionally used for application-specific purposes,
such as random generation, thus they are not always integer
errors. In fact, it is generally impossible to determine whether
a defined wraparound is misused without proper specifica-
tions. Although there are some proposed solutions for recog-
nizing intentional wraparounds purely on source code [28],
[29], they are neither sound nor complete. To prevent intro-
ducing errors on intentional wraparounds, code transforma-
tion rules are customizable to enable or disable precision
elevation on explicit type casts and unsigned overflows.More
specifically, when precision elevation on explicit type casts is
disabled, rules (43A-43B) are replaced with rule (43’) in Fig. 12;
when precision elevation on unsigned overflows is disabled,
rule (46) is replaced by rules (46’A-46’C) in Fig. 12. The new
transformation rules ensure that Theorems 3, 4 and 5 hold.

Fig. 12. New transformation rules.

278 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

http://doi.ieeecomputersociety.org/10.1109/TC.2018.2866388
http://doi.ieeecomputersociety.org/10.1109/TC.2018.2866388

4 IMPLEMENTATION ISSUES

4.1 Overview

We implemented a CINTFIX prototype to automatically repair
C integer errors via source-to-source code transformation.
Fig. 13 illustrates the architecture. CINTFIX takes C source
code as input and uses cpp (the C preprocessor in GCC)
to preprocess the code. Next, the code translator parses
the preprocessed code using CDT (a C/C++ development
tooling based on the Eclipse platform) and performs
rule-based code transformation. The code translator works
with the light-weight static analysis module, which consists
of intra-procedural pointer analysis and critical distance
analysis (Section 4.3). The former is indispensable for
maintaining the consistency between elevated and ordinary
integer variables. The latter is employed for selective code
transformation close to security-critical program sites. The
transformed code can be accepted by standard C compilers
to produce binaries.

Flint [30], a fast number theory library, is chosen as
the implementation of multi-precision integers. Compared
to GMP [31], Flint elevates integer precision on demand and
thus is more efficient for computations at low precision.

The source code of CINTFIX and the experimental data are
publicly available at https://git.io/vEnHz.

4.2 From CSubMP to C

It is generally straightforward to apply transformation
rules on C code because CSub maintains the majority of
C features. For a C expression with side effects (excluding
function calls), we transform the expression into multiple
CSub expressions or assignments separated by comma opera-
tors, then perform transformation on each operand. For an
assignment with implicit conversion, we add an explicit
cast on the RHS to the type of the LHS prior to transformation.
For other implicit conversions unsupported by CSub,
the transformation rules in CSub are directly applied as if
there were no implicit conversions. It is trivial to transform
C-specific statements such as switch-case statements.
Finally, utilizing Flint integers underlies the major challenge
in code transformation. First, Flint integers differ from the
built-in integers in that they need to be created and destroyed
explicitly. To prevent memory leak issues, the code translator
moves local variable declarations to the beginning of the
function body and inserts invocations of fmpz_clear to
free the memory of the elevated variables before exiting
the current function. Block-scoped variables are renamed if
necessary to prevent name collisions.

Second, Flint APIs are procedure styled. Consider the
addition function fmpz_add():

void fmpz_add(fmpz_t f,

const fmpz_t g, const fmpz_t h);

The result of gþ h is stored in f instead of the function
return value, thus several Flint arithmetic operations cannot
be chained directly. To transform a compound expression,
auxiliary variables need to be introduced to store inter-
mediate results. For memory efficiency, the fewer auxiliary
variables introduced the better. CINTFIX numbers auxiliary
variables and reuses them by always picking the available
variable with the smallest number. Theorem 6 gives an
upper bound for the number of required auxiliary variables.

Theorem 6. Given a compound expression where the maximum
arity of its containing operators is k and the depth of its abstract
syntax tree is d, it is sufficient to introduce maxf1; ðk� 1Þdg
auxiliary variables. Note that the call to an n-ary function
(n 	 0) is regarded as an n-ary operation.

Proof. Let e be the considered compound expression.
If k ¼ 0, one variable is required to store the value of e.
Otherwise, assume e ::¼ ^ðe1; . . . ; ntÞ, where ^ is the top-
level operator with t arity. By induction on k and d, in the
worst case, we need to use ðt� 1Þ variables to store values
of e1; . . . ; et�1 andmaxf1; ðk� 1Þðd� 1Þg variables to com-
pute et. Thus, N ¼ ðt� 1Þ þmaxf1; ðk� 1Þðd� 1Þg auxil-
iary variables are sufficient. When t ¼ k, we have
N ¼ maxfk; ðk� 1Þdg ¼ maxf1; ðk� 1Þdg. tu

4.3 Critical Distance Analysis

Although Flint is highly optimized, Flint arithmetic operations
are still much more expensive than the built-in arithmetic
operations because they involve branching instructions and
heap memory management. CINTFIX supports selectively
elevating the precision for expressions close to the security-
critical program sites at which attacks are performed to the
subject programs. Security-critical sites include condition
expressions, array subscripts, return expressions and function
arguments, which follows the notions in relatedwork [2], [32].

LetG ¼ ðV;EÞ be the use-def graph. V is the set of defining
nodes and usage nodes. A defining node vdðx; pcÞ refers to an
assignment that assigns the l-value x at program location pc.
Although function argument passing and function return
involve value defining, they are excluded in the use-def graph
because our code transformation is intra-procedural. A usage
node vuðx; pcÞ refers to an assignment or an expression that

Fig. 14. Rules for critical-site-directed transformation.

Fig. 13. Schematic overview of CINTFIX.

CHENG ETAL.: TOLERATING C INTEGER ERROR VIA PRECISION ELEVATION 279

https://git.io/vEnHz

uses the value of x defined at program location pc. For each
v1 ¼ vdðx1; pcÞ and v2 ¼ vuðx2; pcÞ, we have ðv2; v1Þ 2 E if x1
and x2 possibly refer to the samememory location.

Definition 2. Consider a use-def graph G ¼ ðV;EÞ with
D : V ! N [fþ1g which assigns each v 2 V to its critical
distance. A critical expression is at a security-critical site.
For the node of a critical expression ve 2 V , we have DðveÞ ¼ 0.
For an assignment node vs 2 V , we have DðvsÞ ¼ k if k ¼
minfdðve; vsÞ j DðveÞ ¼ 0g, where dðve; vsÞ is the geodesic
distance from ve to vs in G. dðve; vsÞ ¼ þ1 if vs is unreachable
from ve.

CINTFIX employs backwards data-flow analysis to con-
struct the use-def graph and annotate each node with the
critical distance. We can specify a threshold k (k 	 0) such
that only the following nodes are marked for transfor-
mation: (1) critical expressions and (2) assignments with
critical distances no larger than k. Let Iv be the set of integer
variables to be elevated, then id 2 Iv iff each vdðid; Þ 2 V is
marked. Fig. 14 introduces new rules for critical-site-
directed transformation. For variable declarations, rule (33)
is replaced with rule (33”). For the critical expression e on
the site of target type t (an array subscript has the target
type ptrdiff_t which is an integer type alias defined in
stddef.h) and IðtÞ holds, then e H BCHðbe; tÞ. For marked
assignments, rules (34A-34C, 35, 40) are replaced by rules
(34”A-34”C, 35”, 40”) accordingly, where each occurrence of
Dv is replaced with Iv in the new rules. For other unmarked
expressions and assignments, the transformation is identity.

In short, critical-site-directed code transformation selec-
tively elevates precisions of expressions and assignments
sufficiently close to security-critical sites with respect to
geodesic distance in use-def graph. A local integer variable
is replaced with a multi-precision variable iff each of its
defining node is marked to be elevated.

Critical-site-directed transformation has three important
properties. First, Theorems 3 and 4 still hold for the trans-
formed code. Second, selective code transformation may
miss some integer errors. Finally, when k is sufficiently large

such that Iv ¼ Dv, critical-site-directed transformation is
equivalent to global code transformation.

4.4 Running Example

Fig. 15 shows the transformation of the example code given
by Fig. 3a when k is 1. The critical expressions are underlined
in Fig. 3a. In main, when k ¼ 1, all the definitions of val and
ret are marked for elevation, thus Iv ¼ fval; retg. Since
none of the integer variables appear in points-to sets, the ordi-
nary variables are not retained. It is noteworthy that a return
variable _ret is created in square because we have to store
the return value before destroying multi-precision integers.
CHECK_MP_int is defined in our sanity check library and
used to examine whether the given multi-precision integer
fits into int. If so, the converted int value is returned; other-
wise, the execution switches to an error handler.

5 EXPERIMENTAL EVALUATION

We evaluate CINTFIX on NIST’s Juliet Test Suite [33] and
the SPEC CINT2000 benchmarks for both effectiveness and
efficiency. All experiments are conducted on a PC running
64-bit Ubuntu 16.04, with an Intel Core i5-3470@3.20 GHz
CPU and 32 GB memory. In the evaluation, we focus on the
following questions:

Q1 Does it make sense to classify integer errors as tolera-
ble and intolerable in real-world source code?

Q2 How accurate is CINTFIX at repairing C integer
errors?

Q3 How efficient is CINTFIX at transforming the code?
Q4 How much overhead (in terms of runtime and

source size) is introduced in the repaired code?

5.1 Tolerability of Real-World Integer Errors

Our work is motivated by a central observation that integer
errors can be categorized by tolerability. Tolerable errors
can be repaired by program functionality recovery via pre-
cision elevation. To substantiate this point, we investigate
real-world integer vulnerabilities in the CVE database [34].
Our case study includes 748 CVE identifiers from 214 appli-
cations, which have sufficient details on source code.

As Table 3 shows, 322 of 748 integer vulnerabilities
(43.0 percent) are tolerable. The most common type of toler-
able error is general overflow (71.1 percent, including over-
flow and underflow), followed by sign error (23.0 percent)
and unexpected truncation/sign extension (5.7 percent). It
is remarkable that 62 of 322 tolerable errors (19.3 percent)
are caused by faulty integer error preventions. Although
developers are often aware of integer errors, manual pre-
vention is error-prone.

Fig. 15. The transformation of the example program by CINTFIX.

TABLE 3
The Case Study Results on the CVE Database

tolerability #bugs (ratio) category #bugs (ratio)

tolerable 322 (43.0%)
overflow 229 (71.1%)
signedness 74 (23.0%)
length 19 (5.9%)

intolerable 426 (57.0%)
IO2BO 361 (84.7%)
other sinks 65 (15.3%)

280 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

Approximately 56.8 percent of integer vulnerabilities are
intolerable, and the majority of these errors (87.2 percent)
are IO2BO (integer-overflow-to-buffer-overflow) errors.
More specifically, an IO2BO error involves overflow on the
size argument of a memory operation such as malloc.
The remaining vulnerabilities involve other program sites
that cannot have their precisions elevated.

Summary. For Q1, the classification of tolerability pro-
vides a better understanding for integer errors. A total of
43.0 percent of the studied real-world integer errors are
tolerable, thus they can be repaired by precision elevation
instead of other aggressive remedies, such as sanitization,
which leads to program functionality removal.

5.2 Evaluation on the Juliet Test Suite

NIST’s Juliet Test Suite [33] is a collection of test bench pro-
grams in C/C++ created by the NSA Center for Assured
Software and developed specifically for assessing the capa-
bilities of program analysis tools. The latest version (v1.3)
released on Oct. 2017 contains 64,099 cases for 118 different
CWEs. Our experiments are based on the latest version.

Experimental Design. There are 7 CWE entries related to
integer errors, as shown in Table 4. A total of 8796 test pro-
grams are chosen for evaluation with C++ programs
excluded. Each of test program contains one bad function
with exactly one defect and multiple good functions that are
mutations of the bad function without defects. To validate
fixes for a program, we sample up to 20 inputs that trigger
the target defect for the bad function and up to 20 inputs for
each good function. Failures on validating good (resp. bad)
functions contribute to false positives (resp. false negatives).
The validation process is conducted on a virtual machine

under 32-bit Ubuntu 16.04 with 4 GB memory. Time meas-
ures are the average time of 10 repeated executions. In CINT-

FIX, k is parameterized as 1, and precision elevation on
explicit type casts and unsigned overflows is enabled.

Experimental Results. Table 5 shows the evaluation results
on the Juliet Test Suite. The accuracy results are shown in
Columns 2-8, where Column FN reports false-negative
rates, Column G lists the number of good functions, Column
CG lists the number of corrupted good functions and
Column FP reports the false-negative rates. The efficiency
results are shown in Columns 9-10, where TT denotes the
time cost of code transformation and Column KLOC/s
reports the rate of code transformation in KLOC/s. The last
6 columns report the overhead results, where Column INC
lists the blow-up rate in terms of source size, and Column
OH lists the runtime slowdown of the repaired code.

The accuracy results show that CINTFIX succeeds in
repairing all the bad functions of the benchmark programs,
whereas 459 of 20,383 good functions are corrupted (thus,
the overall false-negative rate is 2.3 percent). No false posi-
tives occur when critical-site-directed code transformation
with k ¼ 1 is performed, which substantiates that integer
errors and critical program sites typically have strong local-
ity along use-def chains. The false negatives all originate
from CWE 191, and the kernel code is shown in Fig. 16.
In line 2, the unsigned integer variable data is assigned
with a negative value such that it is initialized with a large
value. However, the transformed code throws an error mes-
sage instead of printing the value of data in line 3 because
-2 does not fit into unsigned int. If precision elevation on
explicit type casts is disabled, the code transformation has
no false positives, but none of the bad functions in CWE 197
can be correctly repaired (thus, the overall false-negative
rate is 10.1 percent). The kernel code of false positives is
shown in Fig. 17. The lossy truncation in line 3 is expected
as an integer error, whereas the expected result of char-
Data cannot be recovered without precision elevation.

The efficiency results show that, on average, CINTFIX
processes source code at a rate of 5.587 KLOC/s, which
substantiates its scalability to large-scale code bases.
CINTFIX’s efficiency can be explained as follows. First, CINT-

FIX transforms the internal integer model of a C program

TABLE 4
CWE Entries for Evaluation

CWE description #program #file KLOC

190 integer overflow 3,420 5,040 440.749
191 integer underflow 2,622 3,864 340.884
194 unexpected sign extension 912 1,344 108.742

195 signed to unsigned 912 1,344 106.006
conversion error

196 unsigned to signed 18 18 1.547
conversion error

197 numeric truncation error 684 1,008 67.629

680 integer overflow to buffer 228 318 26.911
overflow

TABLE 5
Results on the Juliet Test Suite

CWE #repaired/#total FN G CG FP TT (s) KLOC/s KLOC runtime (s)

tolerable intolerable S old new INC old new OH

190 3420/3420 0/0 3420/3420 0.0% 9360 0 0.0% 76.167 5.787 440.749 501.663 12.0% 0.063 0.067 6.3%
191 2622/2622 0/0 2622/2622 0.0% 7176 459 6.4% 59.350 5.744 340.884 387.835 13.5% 0.048 0.051 6.3%
194 0/0 912/912 912/912 0.0% 1272 0 0.0% 17.772 6.119 108.742 115.401 6.1% 0.024 0.026 8.3%
195 0/0 912/912 912/912 0.0% 1272 0 0.0% 18.403 5.760 106.006 114.375 7.9% 0.020 0.023 15.0%
196 18/18 0/0 18/18 0.0% 31 0 0.0% 0.876 1.766 1.547 1.664 7.6% 0.002 0.002 0.0%
197 684/684 0/0 684/684 0.0% 954 0 0.0% 15.143 4.466 67.629 74.609 10.3% 0.018 0.019 5.6%
680 0/0 228/228 228/228 0.0% 318 0 0.0% 7.824 3.440 26.911 29.233 8.6% 0.010 0.010 0.0%

S 6744/6744 2052/2052 8796/8796 0.0% 20383 459 2.3% 195.535 5.587 1092.468 1224.780 12.1% 0.185 0.198 7.0%

Fig. 16. The kernel code of false negatives.

CHENG ETAL.: TOLERATING C INTEGER ERROR VIA PRECISION ELEVATION 281

towards a multi-precision model in a syntax-directed man-
ner. Second, static analyses are intra-procedural while state
merge is employed at the join points of the program paths,
thus the convergence can be reached faster.

The overhead introduced by code transformation is mea-
sured in terms of two aspects: blow-up in source size,
and runtime slowdown. On the one hand, the source size
increases by 12.1 percent on average. Additional lines of
code are contributed by (1) the creation and destruction of
Flint integer variables, (2) Flint arithmetic operations derived
from splitting compound expressions, and (3) value updates
between ordinary and multi-precision integer variables.
On the other hand, the transformed code has an average
slowdown of 7.0 percent. For each test program, we measure
its average time cost given the sampled inputs for repair vali-
dation while excluding the inputs that make the program
crash unexpectedly (i.e., buffer overrun). The average slow-
down onCWE 196 is 0.0 percent because the timing has insuf-
ficient precision to distinguish the old and new time costs.

Summary. For Q2, CINTFIX has no false negatives, and the
overall false-positive rate is 2.2 percent. For Q3, CINTFIX
processes the source code at a rate of 5.02 KLOC/s. For Q4,
the blow-up rate of the source size is 12.1 percent, and the
runtime slowdown due to code transformation is 7.0 percent
on average.

5.3 Evaluation on SPEC CINT2000

SPEC CINT2000 is an industry-standardized CPU-intensive
benchmark suite consisting of a selected collection of C and
C++ programs designed to be representative of a wide
range of real-world programs. CINT2000 is a subcomponent
of SPEC CPU2000 for measuring computationally-intensive
integer performance to evaluate CINTFIX.

TheCINT2000 benchmarks are reported to contain a collec-
tion of integer errors [12]. Since we do not have complete
knowledge on where the errors are or how they could be

triggered, the CINT2000 benchmark is employed to evaluate
only the efficiency and overhead (Q3 and Q4). Our experi-
ments are based on version 1.2with necessarymodifications.

Experimental Design. To measure the efficiency of the
transformed code, we compare the execution time of the
original and repaired programs given the same ‘ref’ data
sets as inputs. All programs, except 252.eon (a C++ pro-
gram), are used for the evaluation. Clang 3.8 with LLVM 3.8
is used to compile all programs. As in the previous experi-
ment, k is parameterized as 1, and precision elevation on
explicit type casts and unsigned overflows is enabled.
To reduce random error in the timing, time measures are
the average of 10 repeated runs.

Experimental Results. The evaluation results on SPEC
CINT2000 are presented in Table 6. Columns 3-5 report the
size of the original/transformed code and the blow-up rate
of the source size. Column RT lists the reference runtime of
each test program. The last 3 columns report the runtime of
the original/transformed code and the runtime overhead.

Columns 6-7 list the efficiency results. On average, CINT-

FIX processes source code at a rate of 2.92 KLOC/s, which
is substantially slower than that on the Juliet Test Suite.
This slowdown occurs because static analysis costs more
time on the benchmark programs, which generally have
higher complexity in terms of control-flows and memory
manipulations.

The overhead is discussed in terms of source size and
runtime. The transformed code expands by 36.5 percent in
KLOC. The blow-up rate of the source size on CINT2000
is substantially larger than that on the Juliet Test Suite for
two main reasons. First, compound expressions are widely
harbored, thus a large number of expressions are split into
multiple Flint arithmetic operations by the code transforma-
tion. Second, the employed pointer analysis has insufficient
expressivity in analyzing complicated memory operations
(such as accessing a statically indeterminable index of an
array), thus value updates have to be performed for all
the elevated local integer variables. Columns 9-11 show that
the average runtime slowdown is 10.5 percent.

Summary. For Q3, CINTFIX processes the source code at an
overall rate of 2.92 KLOC/s. For Q4, the transformed code
expands by 35.6 percent in KLOC and has 10.5 percent
runtime slowdown on average.

Fig. 17. The kernel code of false positives when precision elevation on
explicit type casts is disabled.

TABLE 6
Results on SPEC CINT2000

name #file KLOC TT (s) KLOC/s RT (s) base time (s)

old new INC (%) old new OH (%)

164.gzip 20 5.615 7.803 39.0 1.946 2.89 1400 64.292 69.895 8.7
175.vpr 41 11.301 15.366 36.0 4.341 2.60 1400 43.758 49.736 13.7
176.gcc 120 149.010 199.132 33.6 47.595 3.13 1100 24.978 27.023 8.2
181.mcf 25 1.482 1.880 26.9 1.300 1.14 1800 37.614 40.988 9.0
186.crafty 43 12.901 18.674 44.7 4.209 3.07 1000 21.267 24.439 14.9
197.parser 18 7.770 10.680 37.5 3.218 2.45 1800 68.681 75.207 9.5
253.perlbmk 91 72.095 100.368 39.2 23.560 3.06 1800 48.134 54.166 12.5
254.gap 63 35.696 47.512 33.1 12.512 2.85 1100 28.146 31.380 10.4
255.vortex 123 49.225 68.577 39.3 15.867 3.10 1900 65.705 74.285 13.1
256.bzip2 2 3.228 4.726 46.4 1.383 2.33 1500 49.008 54.171 10.5
300.twolf 85 17.821 24.908 39.8 9.559 1.86 3000 69.020 74.405 7.8

S 631 366.144 499.626 36.5 125.440 2.92 17800 520.873 575.695 10.5

282 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

5.4 Discussion

Comparison with the State-of-the-Arts. Among the existing
tools [15], [16], [17], [35] for automatic integer error repair,
we choose Coker and Hafiz [15] for comparison because (1)
it works on source code only whereas SOUPINT [17] works on
x86 binary, TAP [35] needs seed inputs and SIFT [16]
requires annotations on input statements; (2) it converts
the internal integer model of a C program towards a safer
model whereas other tools focus on patch generation or
input filters; and (3) it supports various types of integer
errors whereas the other three tools support only integer
overflows in memory operations.

For Coker and Hafiz, we contacted the authors but did
not succeed in obtaining the artifact, thus the comparison is
based on the experimental results on the Juliet Test Suite
reported in the paper. For Q2, although the paper claims
that all the integer errors can be repaired, we found that
380 defects in CWE 194 and 195 cannot be correctly repaired
by adding explicit casts on the condition expressions.
Consider the kernel code of the target defects shown in
Fig. 18. Coker’s approach explicitly casts data in line 3 as
unsigned int to make the type of data consistent with its
usage context in memcpy. However, when data has a value
of 0, data-1 in memset still makes the program suffer
from a buffer overflow error. Thus, Coker’s fixes are incom-
plete for the target defects. Furthermore, among the 6,744
tolerable errors, only 702 (all the defects in CWE 196 and
197) are tolerated by Coker’s, whereas CINTFIX tolerates
all the tolerable errors. This is because Coker’s sanitizes
overflows in arithmetic operations, whereas CINTFIX
attempts to elevate the arithmetic precision to recover the
expected results. There is no sufficient data to answer Q3
and Q4.

Limitations. CINTFIX does not employ range analysis to
detect potential integer errors in the first place, thus some
introduced code transformations may unnecessarily elevate
the precision of the expressions which have no integer errors.
Currently range analysis is not integrated into our approach
for the following reasons. First, since CINTFIX focuses on
converting the input source code into code that utilizes multi-
precision integer arithmetic to be compiled to the executable
with integer errors eliminated, code transformation is exp-
ected as an important step of the overall compilation process
and thus emphasizes efficiency.

Aprecise integer error detection can be too expensive. Second,
if we fix the precision of the expressions and assignments
without integer errors according to range information, issues
of inconsistency between elevated and ordinary variables
may arise. Consider the program on the left. N1 and N2 are
random values that possibly cannot fit into int, whereas N3
and N4 fit into int. Suppose that we elevate the precision on
the assignment at line 9 while fixing the precision on the
assignments at lines 6-7, then the elevated forms of i and j

have incorrect values when the else-branch of C is executed.
Suppose that i-j at line 9 is guaranteed to fit into int and
thus the precision of the assignment at line 9 is fixed, i-j
would bewrongwhen the if-branch of C is executed because
i and j are inconsistent with their elevated formswhich store
the values of N1 and N2, respectively. This is because preci-
sion elevation fails to follow the def-use order. In otherwords,
for an assignment to an ordinary (resp. elevated) integer
variable, not all its subsequent usages are ordinary (resp.
elevated). Third, it is acceptable that unnecessary code trans-
formations introduce additional blow-up in source size
because the transformed code is compiler-oriented.Moreover,
the experimental results show that the average runtime
slowdown of transformed code is 7.0 percent on the Juliet Test
Suite and 10.5 percent on SPECCINT2000,which is acceptable
for a large number of general-purpose applications.

Our approach maintains the types of global variables,
the definitions of structured types and function signatures,
which leads to failures of tolerating relevant integer errors.
This design decision (1) makes the function-wise code
transformation possible and (2) facilitates maintaining the
consistency between integer variables and their elevated
forms. Tolerating integer errors involving data structures is
a future direction.

Finally, utilizing Flint integers is the main source of non-
negligible overhead. To overcome this limitation, CINTFIX
supports critical-site-directed code transformation to selec-
tively elevate the expressions and assignments close to
security-critical program sites. It is possible to utilize a
large bounded integer type (e.g., int128_t) as the multi-
precision integer type based on the intuition that the need
for very high precision is not strong in practice. Further-
more, it is feasible to infer sufficiently elevated types by
range analysis at compile time but it is non-trivial to guar-
antee that the transformed code is well-typed without
unexpected implicit conversions. Consider the condition
expression e1 < e2 where the sufficiently elevated types
for e1 and e2 are long and unsigned long, respectively.
If we have e1 < e2 H ðlongÞe1 < ðunsigned longÞe2, the
possible implicit conversion in comparison may lead
to unexpected program behaviors. A possible solution is to
model the inference of sufficiently elevated types as
constraint solving, which may substantially reduce the effi-
ciency of code transformation.

6 RELATED WORK

Coker and Hafiz. Three program transformations, namely,
adding integer cast (AIC), replacing arithmetic operator
(RAO) and changing integer type (CIT), are proposed to
repair integer problems [15]. Both Coker’s and CINTFIX trans-
form the internal integermodel of a C program towards a safe
model. However, they have two major differences. First,

Fig. 18. The kernel code of the defects on which Coker’s approach fails.

CHENG ETAL.: TOLERATING C INTEGER ERROR VIA PRECISION ELEVATION 283

arithmetic overflows are all sanitized in Coker’s, whereas
CINTFIX elevates arithmetic precision if certain overflow issues
are tolerable. Thus, the transformed code from CINTFIX is
more robust. Second, Coker’s utilizes built-in integer types,
whereas CINTFIX supports multi-precision integers, which
enable it to tolerate more integer errors, such as overflows
over long long int values.

SIFT. SIFT [16] is a static input filter generation tool
for integer overflows in determining sizes for memory
allocations and memory block copy operations. It employs
inter-procedural, weakest precondition static analysis to
propagate safety constraints backwards against the control
flow and it is proved to be sound [36]. This tool has several
limitations. First, SIFT supports limited types of integer
errors. Second, input filters simply remove the functionali-
ties of programs. Third, the generation of effective input
filters relies on correct input statement annotations, which
requires considerable insight and elaborative manual effort
for real-world applications, such as web servers.

SoupInt. Given an x86 binary, SOUPINT [17] leverages
existing error handlers for programmer-anticipated errors
to repair the unanticipated integer overflows that are
exploited to attack the subject programs. The limitations
of this tool are as follows. First, only integer overflows at
memory allocation sites are eligible to be repaired. Second,
the deployment points of patches are restricted to existing
error handlers, which are not always available. Third, gen-
erated patches may have false negatives, i.e., patches cannot
capture the integer overflows triggered by different execu-
tions not given by certain attack instances.

TAP. Given an application and a seed input that makes
the application run normally, TAP [35] analyzes the execu-
tion to the target memory allocation sites dynamically and
employs target error discovery [37] to generate inputs that
trigger integer/buffer overflow errors at certain program
sites. Once an integer/buffer overflow error is detected,
TAP generates a patch based on templates. Our work, how-
ever, focuses on transforming the internal integer model of
a program instead of patch generation. Moreover, our work
supports a broader scope of integer errors than only integer
overflows in memory allocations.

CodePhage. CODEPHAGE [38] is a horizontal code transfer
system that transfers correct code from donor applications
to recipient applications that process the same kind of
inputs. It is based on the assumption that applications of the
same type should have similar behavior given input of
the same kind. CODEPHAGE succeeds in eliminating integer
overflows in real-world applications. Our work differs in
that CINTFIX is capable of repairing integer errors in a fully
automatic manner without donor source code.

KCC. KCC [39], [40] interpreter translates C programs
into a Maude [41] term which is then reduced by the rewrite
rules of the formal semantics of C. A total of 2,155 rewrite
rules are used to model (1) the positive semantics (i.e., the
semantics of correct programs) and (2) the negative
semantics (i.e., the rules identifying undefined behaviors).
For a C program, KCC generates an execution script that
has the identical behavior to that of the native code with
a real C compiler. The major differences between KCC and
our work are summarized below. First, the product of KCC
is a formal representation of a C program instead of native

code. Second, KCC traps the execution for undefined behav-
iors and even implementation-defined behaviors to filter
portable, strictly-conforming programs. The goal of CINTFIX
is different as it attempts to recover the expected behaviors
from integer errors. Third, the applicability of KCC is lim-
ited by the semantics modeling of library functions.

Generic Program Repair. Generic program repair is con-
cerned with automatically correcting the implementation
by patch generation with respect to the given specifications.
Themajority of existing approaches are generate-and-validate
systems that heuristically produce candidate patches and
validate them against test suites. GENPROG [18] uses genetic
programming (GP) to search for program variants that retain
required functionality but are not vulnerable to the target
defect. AE [19] leverages an approximate semantic equiva-
lence relation to reduce the search space. RSREPAIR [42] repla-
ces GP with random search. PAR [43] generates patches
based on predefined templates summarized from successful
human-written patches. SPR [20] deploys a set of parameter-
ized transformation schemas and uses target value search to
quickly filter out schemas where no parameter value exists to
produce a successful repair. PROPHET [21] learns a probabilis-
tic, application-independent model for correct code from
human-written patches to guide patch space exploration.
Some approaches use program synthesis to generate patch
code. SEMFIX [44] andMINTHINT [45] replace the buggy expres-
sion with a symbolic value, and then use symbolic execu-
tion [46] to synthesize a new expression that passes all test
cases. DIRECTFIX [47] leverage MaxSMT optimization to maxi-
mally preserve the structure of the original code. SPR [20]
uses a condition synthesis algorithm to generate condition
expressions that match the expected branch directions
derived from the test suites.

Generic program repair techniques have some fundamen-
tal limitations. First, the quality of repair heavily relies on the
completeness of the test suite which is usually insufficient
in practice. Second, generated patches rarely ensure the
correctness due to limitations in the patch validation infra-
structure [22] and patch space. Third, generate-and-validate
systems often require hours of search to find a plausible patch
for a realistic bug. Our work solves a different problem as we
transform the internal integer model of C programs, which
requires global code transformation. Furthermore, our work
has substantially stronger scalability to large code bases.

Integer Error Detection. A number of advances have been
made in integer error detection. Many numerical abstract
domains [7], [8], [9], [48], [49], [50], [51] have been proposed to
support reasoning on numerical program properties and they
vary in expressivity/cost trade-off. PREFIX+Z3 [52] combines
the static analyzer PREFIX [53] and the bit-precise SMT solver
Z3 [54] and is applied to find integer bugs in several Microsoft
products. KINT generates constraints from source code and
user annotations, and then feeds them to a constraint solver to
determine whether an integer error possibly occurs. SMART-

FUZZ [13], INTPATCH [55] and DIODE [37] use symbolic
execution to generate test cases that trigger integer errors. INT-

SCOPE [32] performs path-sensitive dataflow analysis in a few
interesting program paths by leveraging taint analysis.
INTTRACKER [56] combines taint analysis and dirty value prop-
agation analysis to detect harmful IO2BO vulnerabilities.
RICH [2] captures integer errors based on safe integer

284 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

semantics derived by applying sub-typing theory. BRICK [57],
RA [58] and IOC [12] instrument the program on either source
or binary level to capture integer errors at runtime. Model
checkers such as BLAST [59] and LLBMC [11] convert source
code into logical representations that are fed to a SMT
solver for bit-precise reasoning. Safe integer libraries such as
SafeInt [60] andRanged Integer [61] are used towrap arithme-
tic operations. Our work differs in that CINTFIX focuses on
repairing integer errors by tolerance or sanitization, instead
of simply reporting integer errors.

7 CONCLUSION

In this paper, we propose a novel approach to convert the
input C source code into code that utilizes multi-precision
integer arithmetic to be compiled to the executable with
integer errors eliminated. Multi-precision integers can pre-
cisely simulate mathematical integers such that a large
portion of integer errors can be tolerated (i.e., repaired by
program functionality recovery). The code transformation
employed in our approach is proved to (1) produce well-
typed code and (2) be conservative such that program
behaviors are preserved given inputs that do not trigger
wraparound in the original program. Since our approach is
integrated into the overall compilation process, efficiency is
emphasized. We implement our approach as a prototype
CINTFIX, and the evaluation results substantiate its effective-
ness in tolerating tolerable errors and sanitizing intolerable
errors and its scalability to complex large-scale code bases.

Some future directions are summarized below. First,
range analysis can be leveraged to generate more optimized
code. Second, the properties of code transformation can be
machine-checked with a theorem prover. Third, it would
be interesting to leverage external specifications (e.g., test
suites) to precisely handle the misuse of defined behaviors.

ACKNOWLEDGMENTS

This research is sponsored in part by the NSFC Program
(No. 61527812), the National Science and Technology Major
Project of China (No. 2016ZX01038101), the MIIT Funds of
China (Research and Application of TCN Key Technolo-
gies), the National Science and Technology Support Pro-
gram of China (No. 2015BAG14B01-02) and the National
Key R&D Program of China (No. 2016QY07X1402).

REFERENCES

[1] ISO/IEC, ISO International Standard ISO/IEC 9899: 2011 - Infor-
mation technology - Programming languages - C, ISO, Vernier,
Geneva, Switzerland, 2011.

[2] D. Brumley, D. X. Song, T. Chiueh, R. Johnson, and H. Lin, “RICH:
Automatically protecting against integer-based vulnerabilities,” in
Proc. Annu. Netw. Distrib. Syst. Security Symp., 2007. pp. 1–13.

[3] N. Y. Times, “F.A.A. orders fix for possible power loss in boeing
787.” [Online]. Available: http://www.nytimes.com/2015/05/
01/business/faa-orders-fix-for-possible-power-loss-in-boeing-
787.html, 2015.

[4] CVE, “CVE-2015-7869,” 2015. [Online]. Available: http://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7869

[5] S. Christey and R. A. Martin, “Vulnerability type distributions in
CVE,” 2007. [Online]. Available: http://cve.mitre.org/docs/
vuln-trends/vuln-trends.pdf

[6] S. Christey, B. Martin, M. Brown, A. Paller, and D. Kirby, “2011
CWE/SANS top 25 most dangerous software errors,” 2011.
[Online]. Available: http://cwe.mitre.org/top25/

[7] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Berlin, Germany: Springer, 1999.

[8] A. Min�e, “The octagon abstract domain,” Higher-Order Symbolic
Comput., vol. 19, no. 1, pp. 31–100, 2006.

[9] L. Chen, A. Min�e, and P. Cousot, “A sound floating-point poly-
hedra abstract domain,” in Proc. Asian Symp. Program. Lang. Syst.,
2008, pp. 3–18.

[10] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek,
“Improving integer security for systems with KINT,” in Proc. 10th
USENIXConf. Operating Syst. Des. Implementation, 2012, pp. 163–177.

[11] F. Merz, S. Falke, and C. Sinz, “LLBMC: Bounded model checking
of C and C++ programs using a compiler IR,” in Proc. Verified
Softw.: Theories Tools Experiments, 2012, pp. 146–161.

[12] W. Dietz, P. Li, J. Regehr, and V. S. Adve, “Understanding integer
overflow in C/C++,” ACM Trans. Softw. Eng. Methodology, vol. 25,
no. 1, pp. 2:1–2:29, 2015.

[13] D. Molnar, X. C. Li, and D. Wagner, “Dynamic test generation to
find integer bugs in x86 binary linux programs,” in Proc. 18th
Conf. USENIX Security Symp., 2009, pp. 67–82.

[14] A. Min�e and D. Delmas, “Towards an industrial use of sound
static analysis for the verification of concurrent embedded avion-
ics software,” in Proc. Int. Conf. Embedded Softw., 2015, pp. 65–74.

[15] Z. Coker and M. Hafiz, “Program transformations to fix C inte-
gers,” in Proc. 35th Int. Conf. Softw. Eng., 2013, pp. 792–801.

[16] F. Long, S. Sidiroglou-Douskos, D. Kim, and M. C. Rinard, “Sound
input filter generation for integer overflow errors,” in Proc. 41st ACM
SIGPLAN-SIGACTSymp. Principles Program. Lang., 2014, pp. 439–452.

[17] T. Wang, C. Song, and W. Lee, “Diagnosis and emergency patch
generation for integer overflow exploits,” in Proc. Int. Conf. Detec-
tion Intrusions Malware Vulnerability Assessment, 2014, pp. 255–275.

[18] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg:
A generic method for automatic software repair,” IEEE Trans.
Softw. Eng., vol. 38, no. 1, pp. 54–72, Jan./Feb. 2012.

[19] W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equiv-
alence for adaptive program repair: Models and first results,” in
Proc. 28th IEEE/ACM Int. Conf. Automated Softw. Eng., 2013,
pp. 356–366.

[20] F. Long and M. Rinard, “Staged program repair with condition
synthesis,” in Proc. 10th Joint Meeting Found. Softw. Eng., 2015,
pp. 166–178.

[21] F. Long and M. Rinard, “Automatic patch generation by learning
correct code,” in Proc. 43rd Annu. ACM SIGPLAN-SIGACT Symp.
Principles Program. Lang., 2016, pp. 298–312.

[22] Z. Qi, F. Long, S. Achour, and M. C. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch
generation systems,” in Proc. Int. Symp. Softw. Testing Anal., 2015,
pp. 24–36.

[23] X. Cheng, M. Zhou, X. Song, M. Gu, and J. Sun, “Automatic fix for
C integer errors by precision improvement,” in Proc. IEEE 40th
Annu. Comput. Softw. Appl. Conf., 2016, pp. 2–11.

[24] C. Price, MIPS IV Instruction Set. Sunnyvale, CA, USA: MIPS
Technologies, 1995.

[25] S. Blazy and X. Leroy, “Mechanized semantics for the clight subset
of the C language,” J. Automated Reasoning, vol. 43, no. 3, pp. 263–
288, 2009.

[26] L. O. Andersen, “Program analysis and specialization for the
C programming language,” Ph.D. dissertation, DIKU, Univ.
Cophenhagen, Copenhagen, Denmark, 1994.

[27] W. Lee, H. Oh, and K. Yi, “A progress bar for static analyzers,”
in Proc. Int. Static Anal. Symp., 2014, pp. 184–200.

[28] M. Pomonis, T. Petsios, K. Jee,M. Polychronakis, andA.D.Keromytis,
“Intflow: Improving the accuracy of arithmetic error detection
using information flow tracking,” in Proc. 30th Annu. Comput.
Security Appl. Conf., 2014, pp. 416–425.

[29] H. Sun, X. Zhang, Y. Zheng, and Q. Zeng, “IntEQ: Recognizing
benign integer overflows via equivalence checking across multiple
precisions,” in Proc. IEEE/ACM 38th Int. Conf. Softw. Eng., 2016,
pp. 1051–1062.

[30] W. B. Hart, “Fast library for number theory: An introduction,” in
Proc. Int. Congress Math. Softw., 2010, pp. 88–91.

[31] GNU, “The GNU MP Bignum Library.” 2018. [Online]. Available:
https://gmplib.org

[32] T. Wang, T. Wei, Z. Lin, and W. Zou, “IntScope: Automatically
detecting integer overflow vulnerability in X86 binary using
symbolic execution,” in Proc. Annu. Netw. Distrib. Syst. Security
Symp., 2009. pp. 1–14.

[33] NIST, “Juliet test suite,” 2017. [Online]. Available: https://samate.
nist.gov/SRD/testsuite.php

CHENG ETAL.: TOLERATING C INTEGER ERROR VIA PRECISION ELEVATION 285

http://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html
http://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html
http://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7869
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-7869
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://cve.mitre.org/docs/vuln-trends/vuln-trends.pdf
http://cwe.mitre.org/top25/
https://gmplib.org
https://samate.nist.gov/SRD/testsuite.php
https://samate.nist.gov/SRD/testsuite.php

[34] CVE, “CVE list master copy.” 2018. [Online]. Available: https://
cve.mitre.org/cve/cve.html

[35] S. Sidiroglou-Douskos, E. Lahtinen, and M. Rinard, “Automatic
discovery and patching of buffer and integer overflow errors,” MIT
CSAIL, Cambridge,MA, Tech. Rep.MIT-CSAIL-TR-2015–018, 2015.

[36] F. Long, S. Sidiroglou-Douskos, D. Kim, and M. Rinard, “Sound
input filter generation for integer overflow errors,” MIT CSAIL,
Cambridge, MA, Tech. Rep. MIT-CSAIL-TR-2013-018, 2013.

[37] S. Sidiroglou-Douskos, E. Lahtinen, N. Rittenhouse, P. Piselli,
F. Long, D. Kim, and M. C. Rinard, “Targeted automatic integer
overflow discovery using goal-directed conditional branch
enforcement,” in Proc. 20th Int. Conf. Archit. Support Program. Lang.
Operating Syst., 2015, pp. 473–486.

[38] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard,
“Automatic error elimination by horizontal code transfer across
multiple applications,” in Proc. 36th ACM SIGPLAN Conf. Program.
Lang. Des. Implementation, 2015, pp. 43–54.

[39] C. Ellison and G. Rosu, “An executable formal semantics of C with
applications,” in Proc. 39th Annu. ACM SIGPLAN-SIGACT Symp.
Principles Program. Lang., 2012, pp. 533–544.

[40] C. Hathhorn, C. Ellison, and G. Rosu, “Defining the undefined-
ness of C,” in Proc. 36th ACM SIGPLAN Conf. Program. Lang. Des.
Implementation, 2015, pp. 336–345.

[41] M. Clavel, F. Dur�an, S. Eker, P. Lincoln, N.Mart�ı-Oliet, J. Meseguer,
and J. F. Quesada, “Maude: Specification and programming in
rewriting logic,” Theoretical Comput. Sci., vol. 285, no. 2, pp. 187–
243, 2002.

[42] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of ran-
dom search on automated program repair,” in Proc. 36th Int. Conf.
Softw. Eng., 2014, pp. 254–265.

[43] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proc. Int. Conf. Softw.
Eng., 2013, pp. 802–811.

[44] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“SemFix: Program repair via semantic analysis,” in Proc. 35th Int.
Conf. Softw. Eng., 2013, pp. 772–781.

[45] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso, “MintHint:
Automated synthesis of repair hints,” in Proc. 36th Int. Conf. Softw.
Eng., 2014, pp. 266–276.

[46] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in Proc. 8th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2008, pp. 209–224.

[47] S. Mechtaev, J. Yi, and A. Roychoudhury, “DirectFix: Looking for
simple program repairs,” in Proc. IEEE/ACM 37th IEEE Int. Conf.
Softw. Eng., 2015, pp. 448–458.

[48] A. Simon, A. King, and J. M. Howe, “Two variables per linear
inequality as an abstract domain,” in Proc. Int. Workshop Logic-
Based Program Synthesis Transformation, 2002, pp. 71–89.

[49] R. Claris�o and J. Cortadella, “The octahedron abstract domain,” in
Proc. Int. Static Anal. Symp., 2004, pp. 312–327.

[50] B. Jeannet and A. Min�e, “Apron: A library of numerical abstract
domains for static analysis,” in Proc. Int. Conf. Comput. Aided
Verification, 2009, pp. 661–667.

[51] G. Singh, M. P€uschel, and M. T. Vechev, “Fast polyhedra abstract
domain,” in Proc. 44th ACM SIGPLAN Symp. Principles Program.
Lang., 2017, pp. 46–59.

[52] Y.Moy, N. Bjørner, and D. Sielaff, “Modular bug-finding for integer
overflows in the large: Sound, efficient, bit-precise static analysis,”
Microsoft Research, Redmond, WA, Tech. Rep. MSR-TR-2009-57,
2009.

[53] W. R. Bush, J. D. Pincus, and D. J. Sielaff, “A static analyzer for
finding dynamic programming errors,” Softw. Practice Experience,
vol. 30, no. 7, pp. 775–802, 2000.

[54] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Proc. Int. Conf. Tools Algorithms Construction Anal. Syst., 2008,
pp. 337–340.

[55] C. Zhang, W. Zou, T. Wang, Y. Chen, and T. Wei, “Using type
analysis in compiler to mitigate integer-overflow-to-buffer-over-
flow threat,” J. Comput. Security, vol. 19, no. 6, pp. 1083–1107, 2011.

[56] H. Sun, X. Zhang, C. Su, and Q. Zeng, “Efficient dynamic tracking
technique for detecting integer-overflow-to-buffer-overflow
vulnerability,” in Proc. 10th ACM Symp. Inf. Comput. Commun.
Security, 2015, pp. 483–494.

[57] P. Chen, Y. Wang, Z. Xin, B. Mao, and L. Xie, “BRICK: A binary tool
for run-time detecting and locating integer-based vulnerability,” in
Proc. Int. Conf. Availability Rel. Security, 2009, pp. 208–215.

[58] R. E. Rodrigues, V. H. S. Campos, and F. M. Q. Pereira, “A fast and
low-overhead technique to secure programs against integer over-
flows,” in Proc. IEEE/ACM Int. Symp. Code Generation Optimization,
2013, pp. 33:1–33:11.

[59] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The soft-
ware model checker blast,” Int. J. Softw. Tools Technol. Transfer,
vol. 9, no. 5/6, pp. 505–525, 2007.

[60] D. LeBlanc, “SafeInt,” 2014. [Online]. Available: https://safeint.
codeplex.com/

[61] J. Gennari, S. Hedrick, F. Long, J. Pincar, and R. C. Seacord,
“Ranged integers for the c programming language,” CMU SEI,
Pittsburgh, PA, Tech. Rep. CMU/SEI-2007-TN-027, 2007.

Xi Cheng received the BS and PhD degrees in
software engineering from Tsinghua University,
Beijing, China, in 2013 and 2018, respectively.
He is currently working as a member of Technical
Staff at VMware, Inc. His main research interests
include constraint solving, static analysis, automatic
program repair and software-defined network.

Min Zhou received the BS degree in mathemat-
ics and the PhD degree in computer science from
Tsinghua University, Beijing, China, in 2007 and
2014, respectively. He is currently working as a
lecturer with the School of Software, Tsinghua
University, Beijing, China. His research interests
include model checking, program analysis and
testing.

Xiaoyu Song received the PhD degree from the
University of Pisa, Italy, in 1991. From 1992
to 1998, he was on the faculty with the University
of Montreal, Canada. He joined the Department of
Electrical and Computer Engineering, Portland
State University, in 1998, where he is now a pro-
fessor. He was an editor of the IEEE Transactions
on VLSI Systems and the IEEE Transactions
on Circuits and Systems. He was awarded an
Intel Faculty Fellowship from 2000 to 2005. His
research interests include formal methods, design
automation, embedded systems and emerging
technologies.

Ming Gu received the BS degree in computer
science from the National University of Defense
Technology, China, in 1984, and the MS degree
in computer science from the Chinese Academy
of Science, China, in 1986. She is currently a
professor with the School of Software, Tsinghua
University, China. Her research interests include
software formal methods, software trustwor-
thiness and middleware technology.

Jiaguang Sun received the BS degree in auto-
mation science from Tsinghua University, China,
in 1970. He is currently a professor with the
School of Information Science and Technology,
Tsinghua University, China. He is also a member
of the Chinese Academy of Engineering and is
director of the Tsinghua National Laboratory for
Information Science and Technology, China. His
research interests include computer graphics,
computer-aided design, formal verification and
software engineering.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

286 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 2, FEBRUARY 2019

https://cve.mitre.org/cve/cve.html
https://cve.mitre.org/cve/cve.html
https://safeint.codeplex.com/
https://safeint.codeplex.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

